我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

怎么在numpy中使用linalg模块-创新互联

这期内容当中小编将会给大家带来有关怎么在numpy中使用linalg模块,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

创新互联是一家集网站建设,拱墅企业网站建设,拱墅品牌网站建设,网站定制,拱墅网站建设报价,网络营销,网络优化,拱墅网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np
# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]
# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]
# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。

# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量
 
#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])
 
# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]
 
# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]
# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。
 
#其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组
 
# 创建一个矩阵
C = np.mat("3 -2;1 0")
 
# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]
 
# 使用eig函数求解特征值和特征向量 
#(该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.] 
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]]
 
# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
print ("left:",np.dot(C,c2[:,i]))
print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]
# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。
 
import numpy as np
 
# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma
 
# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]
# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制
 
import numpy as np
 
# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]
 
# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]
# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式
 
import numpy as np
 
# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

学完这些之后,再用其中的numpy.linalg.solve()函数对(H,g)线性方程组进行求解。

def _fit(self, X, t, max_iter=100): #输入样本 , 0,1标签 ,大迭代步数
  self._check_binary(t)
  w = np.zeros(np.size(X, 1))  #初始化权重矩阵 X行
  for _ in range(max_iter):
    w_prev = np.copy(w)    #保存原先的权重信息 用来更新权重
    y = self._sigmoid(X @ w)  #sigmoid 特征向量@权重矩阵 输出y
    grad = X.T @ (y - t)    #一阶导数
    hessian = (X.T * y * (1 - y)) @ X  #二阶导数 Hessian矩阵
    try:
      w -= np.linalg.solve(hessian, grad)
      print(w)
    except np.linalg.LinAlgError:
      break
    if np.allclose(w, w_prev): #收敛到一定的精度
      break
  self.w = w
# [-0.17924772 1.02982033 0.54459921]
# [-0.25994586 1.76892341 0.90294418]
# [-0.35180664 2.60346027 1.25122256]
# [-0.468509  3.54309929 1.60131553]
# [-0.58591528 4.43787542 1.93496706]
# [-0.65896159 4.97839095 2.14764763]
# [-0.67659725 5.10615457 2.20048333]
# [-0.67736191 5.11159274 2.20281247]
# [-0.67736325 5.11160214 2.20281657]

PS:更多示例

# 线性代数
# numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。

import numpy as np

# 1. 计算逆矩阵
# 创建矩阵
A = np.mat("0 1 2;1 0 3;4 -3 8")
print (A)
#[[ 0 1 2]
# [ 1 0 3]
# [ 4 -3 8]]

# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print (inv)
#[[-4.5 7. -1.5]
# [-2. 4. -1. ]
# [ 1.5 -2. 0.5]]

# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print (A * inv)
#[[ 1. 0. 0.]
# [ 0. 1. 0.]
# [ 0. 0. 1.]]

# 注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。


# 2. 求解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量

import numpy as np

#创建矩阵和数组
B = np.mat("1 -2 1;0 2 -8;-4 5 9")
b = np.array([0,8,-9])

# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print (x)
#[ 29. 16. 3.]

# 使用dot函数检查求得的解是否正确
print (np.dot(B , x))
# [[ 0. 8. -9.]]


# 3. 特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组 

import numpy as np

# 创建一个矩阵
C = np.mat("3 -2;1 0")

# 调用eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print (c0)
# [ 2. 1.]

# 使用eig函数求解特征值和特征向量 (该函数将返回一个元组,按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量)
c1,c2 = np.linalg.eig(C)
print (c1)
# [ 2. 1.] 
print (c2)
#[[ 0.89442719 0.70710678]
# [ 0.4472136 0.70710678]] 

# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
 print ("left:",np.dot(C,c2[:,i]))
 print ("right:",c1[i] * c2[:,i])
#left: [[ 1.78885438]
# [ 0.89442719]]
#right: [[ 1.78885438]
# [ 0.89442719]]
#left: [[ 0.70710678]
# [ 0.70710678]]
#right: [[ 0.70710678]
# [ 0.70710678]]

 

# 4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。

import numpy as np

# 分解矩阵
D = np.mat("4 11 14;8 7 -2")
# 使用svd函数分解矩阵
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
#U: [[-0.9486833 -0.31622777]
# [-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
#Sigma: [ 18.97366596 9.48683298]
print ("V",V)
#V [[-0.33333333 -0.66666667 -0.66666667]
# [ 0.66666667 0.33333333 -0.66666667]]
# 结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma

# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
#[[ 4. 11. 14.]
# [ 8. 7. -2.]]

# 5. 广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制

import numpy as np

# 创建一个矩阵
E = np.mat("4 11 14;8 7 -2")
# 使用pinv函数计算广义逆矩阵
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
#[[-0.00555556 0.07222222]
# [ 0.02222222 0.04444444]
# [ 0.05555556 -0.05555556]]

# 将原矩阵和得到的广义逆矩阵相乘
print (E * pseudoinv)
#[[ 1.00000000e+00 -5.55111512e-16]
# [ 0.00000000e+00 1.00000000e+00]]

# 6. 行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式

import numpy as np

# 计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
# -2.0

上述就是小编为大家分享的怎么在numpy中使用linalg模块了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


文章名称:怎么在numpy中使用linalg模块-创新互联
链接分享:http://shouzuofang.com/article/cejpog.html

其他资讯