我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python机器学习之贝叶斯分类-创新互联

一、贝叶斯分类介绍

创新互联主营同安网站建设的网络公司,主营网站建设方案,成都app软件开发,同安h5微信小程序搭建,同安网站营销推广欢迎同安等地区企业咨询

贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算。

二、贝叶斯定理

p(A|B) 条件概率 表示在B发生的前提下,A发生的概率;

 python机器学习之贝叶斯分类

基本贝叶斯分类器通常都假设各类别是相互独立的,即各属性的取值是相互独立的。对于特定的类别且其各属性相互独立,就会有:

 P(AB|C) = P(A|C)*P(B|C)

三、贝叶斯分类案例

1.分类属性是离散

假设有样本数为6个的训练集数字如下:

python机器学习之贝叶斯分类

现在假设来又来了一个人是症状为咳嗽的教师,那这位教师是患上感冒、发烧、鼻炎的概率分别是多少呢?这个问题可以用贝叶斯分类来解决,最后三个疾病哪个概率高,就把这个咳嗽的教师划为哪个类,实质就是分别求p(感冒|咳嗽*教师)和P(发烧 | 咳嗽 * 教师)

P(鼻炎 | 咳嗽 * 教师) 的概率;

假设各个类别相互独立:

python机器学习之贝叶斯分类

python机器学习之贝叶斯分类

 python机器学习之贝叶斯分类

 P(感冒)=3/6    P(发烧)=1/6     P(鼻炎)=2/6

 p(咳嗽) = 3/6   P(教师)= 2/6

 p(咳嗽 | 感冒) = 2/3   P(教师 | 感冒) = 1/3

python机器学习之贝叶斯分类

按以上方法可分别求  P(发烧 | 咳嗽 × 教师) 和P(鼻炎 |咳嗽 × 教师 )的概率;

2.分类属性连续

如果按上面的样本上加一个年龄的属性;因为年龄是连续,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算;这时,可以假设感冒、发烧、鼻炎分类的年龄都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数;

python机器学习之贝叶斯分类

下面就以求P(年龄=15|感冒)下的概率为例说明:

   第一:求在感冒类下的年龄平均值  u=(15+48+12)/3=25

   第二:求在感冒类下年龄的方差 代入下面公司可求:方差=266

python机器学习之贝叶斯分类

   第三:把年龄=15 代入正太分布公式如下:参数代进去既可以求的P(age=15|感冒)的概率

python机器学习之贝叶斯分类

其他属性按离散方法可求;

四、概率值为0处理

假设有这种情况出现,在训练集上感冒的元祖有10个,有0个是孩子,有6个是学生,有4个教师;当分别求

      P(孩子|感冒) =0; P(学生|感冒)=6/10 ; P(教师|感冒)=4/10  ;出现了概率为0的现象,为了避免这个现象,在假设训练元祖数量大量的前提下,可以使用拉普拉斯估计法,把每个类型加1这样可求的分别概率是

      P(孩子|感冒) = 1/13  ; P(学生|感冒) = 7/13   ; P(教师|感冒)=4/13

 五、垃圾邮件贝叶斯分类案例

1.准备训练集数据

假设postingList为一个六个邮件内容,classVec=[0,1,0,1,0,1]为邮件类型,设1位垃圾邮件

def loadDataSet(): 
 postingList =[['my','dog','has',' flea','problems','help','please'], 
     ['mybe','not','take','him','to','dog','park','stupid'], 
     ['my','dalmation','is','so','cute','i','love','hime'], 
     ['stop','posting','stupid','worthless','garbage'], 
     ['mr','licks','ate','my','steak','how','to','stop','hime'], 
     ['quit','buying','worthless','dog','food','stupid','quit']] 
 classVec =[0,1,0,1,0,1] 
 return postingList,classVec 

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前标题:python机器学习之贝叶斯分类-创新互联
分享路径:http://shouzuofang.com/article/cohhhi.html

其他资讯