十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章将为大家详细讲解有关怎么创建一个pandas多层索引,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
成都创新互联服务项目包括中牟网站建设、中牟网站制作、中牟网页制作以及中牟网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,中牟网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到中牟省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!普通-多个index创建
在创建数据的时候加入一个index列表,这个index列表里面是多个索引列表
Series多层索引的创建方法
import pandas as pd s = pd.Series([1,2,3,4,5,6],index=[['张三','张三','李四','李四','王五','王五'], ['期中','期末','期中','期末','期中','期末']]) # print(s) s
张三 期中 1
期末 2
李四 期中 3
期末 4
王五 期中 5
期末 6
dtype: int64
import numpy as np data = np.random.randint(0,100,size=(6,3)) # np.random.randint(0,100,size=(6,3))是使用numpy中的随机模块random中,生成随机整数方法randint, # 里面的参数size是指定生成6行3列的数据,并且每个数字的范围在0到100之间 data
array([[44, 66, 67], [82, 52, 0], [34, 78, 23], [38, 4, 43], [60, 62, 40], [57, 9, 11]])
import pandas as pd import numpy as np data = np.random.randint(0,100,size=(6,3)) df = pd.DataFrame(data,index=[['张三','张三','李四','李四','王五','王五'], ['期中','期末','期中','期末','期中','期末']], columns=['Java','Web','Python']) df
Java | Web | Python | ||
---|---|---|---|---|
张三 | 期中 | 68 | 4 | 90 |
期末 | 33 | 63 | 73 | |
李四 | 期中 | 30 | 13 | 68 |
期末 | 14 | 18 | 48 | |
王五 | 期中 | 34 | 66 | 26 |
期末 | 89 | 10 | 35 |
import pandas as pd import numpy as np data = np.random.randint(0,100,size=(6,3)) names = ['张三','李四','王五'] exam = ['期中','期末'] index = pd.MultiIndex.from_product([names,exam]) df = pd.DataFrame(data,index=index,columns=['Java','Web','Python']) # print(df) df
Java | Web | Python | ||
---|---|---|---|---|
张三 | 期中 | 51 | 78 | 47 |
期末 | 39 | 53 | 36 | |
李四 | 期中 | 33 | 60 | 83 |
期末 | 90 | 55 | 3 | |
王五 | 期中 | 37 | 45 | 66 |
期末 | 6 | 82 | 71 |
from_product()在这个里面的列表中位置不同, 产生的索引页会不同
index = pd.MultiIndex.from_product([exam, names]) df = pd.DataFrame(data,index=index,columns=['Java','Web','Python']) # print(df) df
Java | Web | Python | ||
---|---|---|---|---|
期中 | 张三 | 51 | 78 | 47 |
李四 | 39 | 53 | 36 | |
王五 | 33 | 60 | 83 | |
期末 | 张三 | 90 | 55 | 3 |
李四 | 37 | 45 | 66 | |
王五 | 6 | 82 | 71 |
from_product([exam,names])会将列表中第一个元素作为最外层索引,依次类推
获取到我们想要的数据
创建数据
import pandas as pd s = pd.Series([1,2,3,4,5,6],index=[['张三','张三','李四','李四','王五','王五'], ['期中','期末','期中','期末','期中','期末']]) print(s)
张三 期中 1
期末 2
李四 期中 3
期末 4
王五 期中 5
期末 6
dtype: int64
可以直接使用[]的方式取最外面的一个层级 s[‘张三']
s['李四'] # 注意:[]取值方式,不可直接使用最外层以外的其他层级,例如:s['期末']
期中 3
期末 4
dtype: int64
使用['外索引', '内索引'], 获取某个数据
注意:[‘张三',‘期末']他们的顺序不能变。剥洋葱原则,从外到内一层一层的剥。
s['李四', '期中'] # 李四期中分值 # 注意:['张三','期末']他们的顺序不能变。剥洋葱原则,从外到内一层一层的剥。
3
使用[]的切片,获取数据s[:,‘期中']
s[:,'期中'] # 第一个值为全部的外索引
张三 1
李四 3
王五 5
dtype: int64
loc 使用的是标签suoyin
iloc使用的是位置索引
# loc 使用方式与 [] 的方式基本一样 s.loc['张三'] s.loc['张三','期中'] s.loc[:,'期中'] # iloc 的取值并不会受多层索引影响,只会根据数据的位置索引进行取值, 不推荐
张三 1
李四 3
王五 5
dtype: int64
在对多层索引DataFrame的取值是,推荐使用 loc() 函数
import pandas as pd import numpy as np #size参数是指定生成6行3列的数组 data = np.random.randint(0,100,size=(6,3)) names = ['张三','李四','王五'] exam = ['期中','期末'] index = pd.MultiIndex.from_product([names,exam]) df = pd.DataFrame(data,index=index,columns=['Java','Web','Python']) df
Java | Web | Python | ||
---|---|---|---|---|
张三 | 期中 | 3 | 40 | 52 |
期末 | 74 | 38 | 85 | |
李四 | 期中 | 7 | 28 | 16 |
期末 | 9 | 25 | 0 | |
王五 | 期中 | 13 | 24 | 8 |
期末 | 49 | 46 | 1 |
三种方式都可以获取张三期中各科成绩
# df.loc['张三','期中'] # df.loc['张三'].loc['期中'] # df.loc[('张三','期中')]
注意:DataFrame中对行索引的时候和Series有一个同样的注意点,就是无法直接对二级索引直接进行索引,必须让二级索引变成一级索引后才能对其进行索引
使用sort_index() 排序
level参数可以指定是否按照指定的层级进行排列
第一层索引值为0, 第二层索引的值为1
创建数据
import pandas as pd data = np.random.randint(0,100,size=(9,3)) key1 = ['b','c','a'] key2 = [2,1,3] index = pd.MultiIndex.from_product([key1,key2]) df = pd.DataFrame(data,index=index,columns=['Java','Web','Python']) df
Java | Web | Python | ||
---|---|---|---|---|
b | 2 | 56 | 82 | 81 |
1 | 84 | 16 | 55 | |
3 | 35 | 25 | 86 | |
c | 2 | 76 | 1 | 76 |
1 | 36 | 28 | 94 | |
3 | 79 | 70 | 97 | |
a | 2 | 25 | 17 | 30 |
1 | 38 | 38 | 78 | |
3 | 41 | 75 | 90 |
DataFrame按行索引排序的方法是sort_index()
如果直接使用的话,不传参数, 会把每一层索引根据值进行升序排序
df.sort_index()
Java | Web | Python | ||
---|---|---|---|---|
a | 1 | 18 | 60 | 74 |
2 | 66 | 87 | 27 | |
3 | 96 | 18 | 64 | |
b | 1 | 72 | 58 | 52 |
2 | 22 | 31 | 22 | |
3 | 31 | 12 | 83 | |
c | 1 | 6 | 54 | 96 |
2 | 9 | 47 | 18 | |
3 | 31 | 63 | 4 |
# 当level=0时,ascending=False, 会根据第一层索引值进行降序排序 df.sort_index(level=0,ascending=False)
Java | Web | Python | ||
---|---|---|---|---|
c | 3 | 79 | 70 | 97 |
2 | 76 | 1 | 76 | |
1 | 36 | 28 | 94 | |
b | 3 | 35 | 25 | 86 |
2 | 56 | 82 | 81 | |
1 | 84 | 16 | 55 | |
a | 3 | 41 | 75 | 90 |
2 | 25 | 17 | 30 | |
1 | 38 | 38 | 78 |
# 当level=1时,会根据第二层索引值进行降序排序 df.sort_index(level=1,ascending=False) # 数据会根据第二层索引值进行相应的降序排列, # 如果索引值相同时会根据其他层索引值排列
Java | Web | Python | ||
---|---|---|---|---|
c | 3 | 79 | 70 | 97 |
b | 3 | 35 | 25 | 86 |
a | 3 | 41 | 75 | 90 |
c | 2 | 76 | 1 | 76 |
b | 2 | 56 | 82 | 81 |
a | 2 | 25 | 17 | 30 |
c | 1 | 36 | 28 | 94 |
b | 1 | 84 | 16 | 55 |
a | 1 | 38 | 38 | 78 |
通过level设置排序的索引层级,其他层索引也会根据其排序规则进行排序
关于怎么创建一个pandas多层索引就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。