我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

有关二分查找的边界思考-创新互联

1、二分查找概念

海港ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

2、二分查找简单实现

(1)左开右闭 【 )

//非递归版本
int* BinarySearch(int *a,int n,int key)
{
	if (a==NULL||n==0)
	{
		return NULL;
	}
	//[)
	int left=0;
	int right=n;
	while(leftkey)
		{
			right=mid;     
			//如果写成right=mid+1 元素如果是a[0]=0,a[1]=1,要找1
			//left=0,right=1,mid=0
			//然后a[mid]<1,right=mid;此时找不到1,因为left=0;i--)
	{
		int *temp=BinarySearch(a,10,i);
		if(temp==NULL)
		{
			cout<<"NULL"<key)
        {
            return BinarySearch_R(a,n,key,left,mid);
        }
        else if(a[mid]=0;i--)
	{
		int *temp=BinarySearch_R(a,10,i,0,10);
		if(temp==NULL)
		{
			cout<<"NULL"<

(2)左闭右闭 【】

int* BinarySearch_C(int *a,int n,int key)
{
    if(a==NULL||n==0)
    {
        return NULL;
    }
    //[]
    int left=0;
    int right=n-1;
    while(left<=right)
    {
        int mid=left+(right-left)/2;
        if(a[mid]>key)
        {
            right=mid-1; //a[mid]的值已经判断过了
        }
        else if(a[mid]=0;i--)
	{
		int *temp=BinarySearch_C(a,10,i);
		if(temp==NULL)
		{
			cout<<"NULL"<key)
        {
            return BinarySearch_R(a,n,key,left,mid-1);
        }
        else if(a[mid]=0;i--)
	{
		int *temp=BinarySearch_CR(a,10,i,0,9);
		if(temp==NULL)
		{
			cout<<"NULL"<

题目:

正整数数组a[0], a[1], a[2], ···, a[n-1],n可以很大,大到1000000000以上,但是数组中每个数都不超过100。现在要你求所有数的和。假设这些数已经全部读入内存,因而不用考虑读取的时间。希望你用最快的方法得到答案。

提示:二分。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页题目:有关二分查找的边界思考-创新互联
链接地址:http://shouzuofang.com/article/ddoooe.html

其他资讯