我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

PythonNumpy库对数组的操作案例-创新互联

小编给大家分享一下Python Numpy库对数组的操作案例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联公司专注于项城企业网站建设,成都响应式网站建设公司,商城网站建设。项城网站建设公司,为项城等地区提供建站服务。全流程定制设计,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务

1. 简介

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。最主要的数据结构是ndarray数组。

NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab。

SciPy 是一个开源的 Python 算法库和数学工具包。SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。

Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。

2. 创建

创建一维数组

(1)直接创建:np.array([1, 2, 3, 4, 5, 6])

(2)从python的list中建立:np.array(list([1, 2, 3, 4, 5, 6]))

创建常量值的一维数据

(1)创建以0为常量值:np.zeros(n,dytpe=float/int)

(2)创建以1为常量值:np.ones(n)

(3)创建一个空数组:np.empty(4)

创建一个元素递增的数组

(1)从0开始增长的递增数组:np.arange(8)

(2)给定区间,自定义步长:np.arange(0,1,0.2)

(3)给定区间,自定义个数:np.linspace(-1,1,50)

创建多维数组:创建单维数组,再添加进多维数组

# 数组的结构一定是np.array([]) 无论数组中间存放的是多少“层”数据
# 二维数组相当于存放的是“两层”数组而已
arr1=np.array(list([1, 2, 3, 4, 5]))
arr2=np.array([arr1,[1,0,0,1,0]])               # 2*5的两维数组
arr3=np.array(list([[0,0,1,1,1],[1,1,1,0,0],[2,3,4,5,6]]))    # 3*5的两维数组
arrx=np.array([arr1,list([1, 2, 3, 4, 5],[1,1,1,0,0])])     # 报错
arry=np.array([list([[ 1,2,3,  7, 11],[2,3,4,5,6]]),[1, 2, 3, 4, 5]]) # 报错

创建常量值的(n*m)维数据

(1)创建以0为常量值:np.zeros((n*m),dytpe=float/int)

(2)创建以1为常量值:np.ones((n*m))

(3)创建一个空数组:np.empty((n*m))

创建随机数字的数组

生成随机数种子:

(1)np.random.seed()

(2)np.random.RandomState()

生成随机数:

Python Numpy库对数组的操作案例

生成有分布规律的随机数组

(1)二项分布:np.random.binomial(n, p, size)

(2)正态分布:np.random.normal(loc, scale, size)

将csv文件转化成数组或阵列

使用 np.genfromtxt( ‘csv文件名’,delimiter = ‘文件中的分割符’ )函数将文件转化成数组

csv_array = np.genfromtxt('sample.csv', delimiter=',')
 print(csv_array)

3. 数组的变形

生成数组/矩阵转置的函数,即行列数字交换,使用.T

a = np.array([[32, 15, 6, 9, 14], 
              [12, 10, 5, 23, 1],
              [2, 16, 13, 40, 37]])
print(a.T)
-------------------
# 结果如下
[[32 12  2]
 [15 10 16]
 [ 6  5 13]
 [ 9 23 40]
 [14  1 37]]

改变数组的形状:

(1)arr.resize(n,m) :arr.resize(n,m)函数是原地修改数组,要求:元素的个数必须一致

a=np.arange(8)
a.resize(2,4)
print(a)
---------------------------
[[0 1 2 3]
 [4 5 6 7]]

(2)arr.reshape(n,m):如果某一个维度的参数为-1,则表示元素总个数会迁就另一个维度来计算

a=np.arange(8).reshape(-1,1)
print(a)
-----------------
[[0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]]

将一维升至二维:np.newaxis

np.newaxis实际上是直接增加维度的意思,我们一般不会给数组增加太多维度,这里以一维增加到二维为例:

(1)增加行维度:arr[np.newaxis, :]

(2)增加列维度:arr[: , np.newaxis]

a=np.arange(8)
a             # array([0, 1, 2, 3, 4, 5, 6, 7])
a.shape           # (8,)
a[np.newaxis, :]      # array([[0, 1, 2, 3, 4, 5, 6, 7]])
a.shape           # (8,)
a[: , np.newaxis]     # array([[0],[1],[2],[3],[4],[5],[6],[7]])
a.shape           # (8,)

降维:arr.ravel()

arr.ravel()函数在降维时:默认是行序优先生成新数组(就是一行行读);如果传入参数“F”则是列序降维生成新数组

a=np.array([[1,2],[3,4]])
a.ravel()       
a.ravel('F')      
----------------------------
# 结果 array([1, 2, 3, 4])
# 结果 array([1, 3, 2, 4])

4. 计算

对数组进行计算操作

(1)对元素进行加减计算

a=np.arange(8).reshape(2,4)       # array([[0, 1, 2, 3], [4, 5, 6, 7]])
b=np.random.randint(8,size=(2,4))   # array([[1, 2, 5, 3], [4, 1, 0, 6]])
a+b
a-b
----------------------------
# a+b和a-b结果分别是:
array([[ 1,  3,  7,  6],
       [ 8,  6,  6, 13]])
array([[-1, -1, -3,  0],
       [ 0,  4,  6,  1]])

(2)乘法:平方/矩阵中元素相乘

a=np.arange(8).reshape(2,4)       # array([[0, 1, 2, 3], [4, 5, 6, 7]])
b=np.random.randint(8,size=(2,4))   # array([[1, 2, 5, 3], [4, 1, 0, 6]])
a**2
a*b
-----------------------
# a矩阵平方/a*b矩阵中元素相乘结果分别:
array([[ 0,  1,  4,  9],
       [16, 25, 36, 49]])
array([[ 0,  2, 10,  9],
       [16,  5,  0, 42]])

(3)矩阵*矩阵:

# 要求a矩阵的行要等于b矩阵的列数;且a矩阵的列等于b矩阵的行数
a=np.arange(8).reshape(2,4)       # array([[0, 1, 2, 3], [4, 5, 6, 7]])
b=np.random.randint(8,size=(4,2))   # array([[3, 0],[3, 3],[5, 6],[6, 7]])
c1 = np.dot(a,b)
c2 = a.dot(b)
----------------------
# ab矩阵相乘的结果:c1=c2 
array([[ 31,  36],
     [ 99, 100]])

(4)逻辑计算

【注】列表是无法作为一个整体对其中的各个元素进行逻辑判断的!

# 结果返回:一个数组,其中每个元素根据逻辑判断的布尔类型的结果
a > 3 
-----------------------------
# 结果如下:
array([[False, False, False, False],
     [ True,  True,  True,  True]])

5. 取值

获取一维数组中的某个元素:操作和list列表的index一样

a = np.array([5, 2, 7, 0, 11])
a[0]      # 结果为 5
a[:4]     # 结果为 从头开始到索引为4结束
a[2:]     # 结果为 从索引为2的开始到结尾
a[::2]      # 结果为 从头开始到结尾,每2个取一个值

获取多维数组的某个元素,某行或列值

a = np.array([[32, 15, 6, 9, 14], 
         [12, 10, 5, 23, 1],
         [2, 16, 13, 40, 37]])
a[2,1]     # 结果是一个元素 16
a[2][1]    # 结果是一个元素 16
a[1]      # 第2行 array([12, 10,  5, 23,  1])
a[:,2]   # 取出全部行,第2列 [15,10,16]
a[1:3, :]   # 取出[1,3)行,全部列
a[1,1:]    # array([10,  5, 23,  1])

获取满足逻辑运算的

# 需要注意的是,我们数据进行逻辑计算操作得到的仍然是一个数组
# 如果我们想要的是一个过滤后的数组,就需要将"逻辑判断"传入数组中
a = np.array([[32, 15, 6, 9, 14], 
              [12, 10, 5, 23, 1],
              [2, 16, 13, 40, 37]])
a[a > 3]
a[(a > 3) | (a < 2)]  
------------------------------
# 结果分别是:
array([32, 15,  6,  9, 14, 12, 10,  5, 23, 16, 13, 40, 37])
array([32, 15,  6,  9, 14, 12, 10,  5, 23,  1, 16, 13, 40, 37])

遍历:结果是按行输出

a = np.array([[32, 15, 6, 9, 14], 
         [12, 10, 5, 23, 1],
         [2, 16, 13, 40, 37]])
for x in a:
    print(x)
--------------------
[32 15  6  9 14]
[12 10  5 23  1]
[ 2 16 13 40 37]

6. 复制/分割/合并

复制:arr.cope()

分割:

(1)等分:np.split(arr, n, axis=0/1)(即行数或列数可以整除n时才可以)

(2)不等分:np.array_split(arr, n) 默认按行分n份

a = np.array([[32, 15, 6, 9, 14, 21], 
         [12, 10, 5, 23, 1, 10],
         [2, 16, 13, 40, 37, 8]])
              
# 可以看到a矩阵是(3*6),所以使用np.split()只能尝试行分成3份;或者列分成2/3/6份 
np.split(a,3,axis=0)  
np.split(a,3,axis=1)
np.array_split(a,2)
np.array_split(a,4,axis=1)
-------------------------------------------
[array([[32, 15,  6,  9, 14, 21]]),
 array([[12, 10,  5, 23,  1, 10]]),
 array([[ 2, 16, 13, 40, 37,  8]])]
   
[array([[32, 15],
        [12, 10],
        [ 2, 16]]), array([[ 6,  9],
        [ 5, 23],
        [13, 40]]), array([[14, 21],
        [ 1, 10],
        [37,  8]])]
        
[array([[32, 15,  6,  9, 14, 21],
        [12, 10,  5, 23,  1, 10]]), array([[ 2, 16, 13, 40, 37,  8]])]
        
[array([[32, 15],
        [12, 10],
        [ 2, 16]]), array([[ 6,  9],
        [ 5, 23],
        [13, 40]]), array([[14],
        [ 1],
        [37]]), array([[21],
        [10],
        [ 8]])]

合并:np.concatenate((arr1,arr2,arr3), axis=0/1) 默认接在数据下面

a=np.random.rand(2,3)
b=np.random.randint(1,size=(2,3))
np.concatenate((a,b,a))         # 接在下面
np.concatenate((a,b,a),axis=1)      # 接在后面
------------------------
array([[0.95912866, 0.81396527, 0.809493  ],
       [0.4539276 , 0.24173315, 0.63931439],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.95912866, 0.81396527, 0.809493  ],
       [0.4539276 , 0.24173315, 0.63931439]])
array([[0.95912866, 0.81396527, 0.809493  , 0.        , 0.        ,
        0.        , 0.95912866, 0.81396527, 0.809493  ],
       [0.4539276 , 0.24173315, 0.63931439, 0.        , 0.        ,
        0.        , 0.4539276 , 0.24173315, 0.63931439]])

以上是Python Numpy库对数组的操作案例的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联网站制作公司行业资讯频道!


网页名称:PythonNumpy库对数组的操作案例-创新互联
链接分享:http://shouzuofang.com/article/dhedeo.html

其他资讯