十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
python数组和列表有哪些区别?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联专注于企业全网整合营销推广、网站重做改版、朝天网站定制设计、自适应品牌网站建设、html5、电子商务商城网站建设、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为朝天等各大城市提供网站开发制作服务。python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同。在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu。numpy中封装的array有很强大的功能,里面存放的都是相同的数据类型
python本身并没有数组类型,但是他的Numpy库中有数组类型。
二者都可以用于处理多维数组。
Numpy中的ndarray对象用于处理多维数组,它作为一个快速而灵活的大数据容器。Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组。
2存储效率和输入输出性能不同。
Numpy专门针对数组的操作和运算进行了设计,存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。
3元素数据类型。
通常,Numpy数组中的所有元素的类型都必须相同的,而Python列表中的元素类型是任意的,所以在通用性能方面Numpy数组不及Python列表,但在科学计算中,可以省掉很多循环语句,代码使用方面比Python列表简单的多。
array的创建
Numpy数组创建时,参数既可以是list,也可以是元组。例如:
>>> a=np.array((1,2,3))#参数是tuple >>> b=np.array([6,7,8])#参数是list >>> c=np.array([[1,2,3],[4,5,6]])#参数是二维list
除此之外,还可以使用numpy提供的其他方法创建一个数组,例如:
>>> arr1=np.arange(1,10,1) >>> arr2=np.linspace(1,10,10)
np.arange(a,b,c)表示产生从a-b不包括b,间隔为c的一个array,数据类型默认是int32。但是linspace(a,b,c)表示的是把a-b平均分成c分,它包括b。
看完上述内容,你们掌握python数组和列表有哪些区别的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!