十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
总说
由于pytorch 0.4版本更新实在太大了, 以前版本的代码必须有一定程度的更新. 主要的更新在于 Variable和Tensor的合并., 当然还有Windows的支持, 其他一些就是支持scalar tensor以及修复bug和提升性能吧. Variable和Tensor的合并导致以前的代码会出错, 所以需要迁移, 其实迁移代价并不大.
Tensor和Variable的合并
说是合并, 其实是按照以前(0.1-0.3版本)的观点是: Tensor现在默认requires_grad=False的Variable了.torch.Tensor
和torch.autograd.Variable
现在其实是同一个类! 没有本质的区别! 所以也就是说,现在已经没有纯粹的Tensor了, 是个Tensor, 它就支持自动求导!你现在要不要给Tensor
包一下Variable
, 都没有任何意义了.
查看Tensor的类型
使用.isinstance()
或是x.type()
, 用type()
不能看tensor的具体类型.
>>> x = torch.DoubleTensor([1, 1, 1]) >>> print(type(x)) # was torch.DoubleTensor "" >>> print(x.type()) # OK: 'torch.DoubleTensor' 'torch.DoubleTensor' >>> print(isinstance(x, torch.DoubleTensor)) # OK: True True
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。