我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

关于python统计函数耗时的信息

python 打印出函数执行所用时间

使用timeit模块,先介绍下:

成都创新互联公司是一家集网站建设,蚌山企业网站建设,蚌山品牌网站建设,网站定制,蚌山网站建设报价,网络营销,网络优化,蚌山网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

timeit 模块

timeit 模块定义了接受两个参数的 Timer 类。两个参数都是字符串。 第一个参数是你要计时的语句或者函数。 传递给 Timer 的第二个参数是为第一个参数语句构建环境的导入语句。 从内部讲, timeit 构建起一个独立的虚拟环境, 手工地执行建立语句,然后手工地编译和执行被计时语句。

一旦有了 Timer 对象,最简单的事就是调用 timeit(),它接受一个参数为每个测试中调用被计时语句的次数,默认为一百万次;返回所耗费的秒数。

Timer 对象的另一个主要方法是 repeat(), 它接受两个可选参数。 第一个参数是重复整个测试的次数,第二个参数是每个测试中调用被计时语句的次数。 两个参数都是可选的,它们的默认值分别是 3 和 1000000。 repeat() 方法返回以秒记录的每个测试循环的耗时列表。Python 有一个方便的 min 函数可以把输入的列表返回成最小值,如: min(t.repeat(3, 1000000))

你可以在命令行使用 timeit 模块来测试一个已存在的 Python 程序,而不需要修改代码。

再给你个例子,你就知道怎么做了。

# -*- coding: utf-8 -*-

#!/bin/env python

def test1():

n=0

for i in range(101):

n+=i

return n

def test2():

return sum(range(101))

def test3():

return sum(x for x in range(101))

if __name__=='__main__':

from timeit import Timer

t1=Timer("test1()","from __main__ import test1")

t2=Timer("test2()","from __main__ import test2")

t3=Timer("test3()","from __main__ import test3")

print t1.timeit(1000000)

print t2.timeit(1000000)

print t3.timeit(1000000)

print t1.repeat(3,1000000)

print t2.repeat(3,1000000)

print t3.repeat(3,1000000)

python 统计 函数运行 次数。

import time

def time_me(fn):

def _wrapper(*args, **kwargs):

start = time.clock()

fn(*args, **kwargs)

print "%s cost %s second"%(fn.__name__, time.clock() - start)

return _wrapper

#这个装饰器可以在方便地统计函数运行的耗时。

#用来分析脚本的性能是最好不过了。

#这样用:

@time_me

def test(x, y):

time.sleep(0.1)

@time_me

def test2(x):

time.sleep(0.2)

test(1, 2)

test2(2)

#输出:

#test cost 0.1001529524 second

#test2 cost 0.199968431742 second

Python:

Python(英语发音:/ˈpaɪθən/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。

Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议[1] 。

Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。

Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

找出python程序中运行时最耗时间的部分

那就是profile和cProfile模块:

import cProfile

cProfile.run('function....')

另外,time模块,在不同的函数的开头和结尾分别计时,然后将两个时间相减,就可以获得这段函数的运行时间了,然后在看哪段函数占的时间比较大:

import time

t1=time.time()

##you function segment here

t2=time.time()

timediff=t2-t1

python里since的作用

功能:计算消耗的时间,返回时间格式 importmath, time deftimeSince(since): # 构建时间计算函数 "获得每次打印的训练耗时,since是训练开始时间" # 获得当前时间 now = time.time() # 获得时间差,是训练耗时 s = now - since # 将秒转化为分钟,并取整 m = math.floor(s /60) # 计算剩下不够凑成1分钟的秒数 s -= m *60 # 返回指定格式的耗时 return'%dm %ds'% (m, s)。

在python里用time.time判断函数的执行时间靠谱吗

使用time.time来统计函数的执行时间,程序只会执行一次,存在很大的随机因素。

timtit包就可以重复执行函数多次,然后将多次执行结果取平均值。相比起来更优。

然而程序执行时间很大程度还受计算机性能的影响,衡量程序好坏更靠谱的手段是计算时间复杂度。

「低门槛 手把手」python 装饰器(Decorators)原理说明

本文目的是由浅入深地介绍python装饰器原理

装饰器(Decorators)是 Python 的一个重要部分

其功能是, 在不修改原函数(类)定义代码的情况下,增加新的功能

为了理解和实现装饰器,我们先引入2个核心操作:

在这个例子中,函数hi的形参name,默认为'world'

在函数内部,又定义了另一个函数 howdoyoudo,定义这个函数时,将形参name作为新函数的形参name2的默认值。

因此,在函数内部调用howdoyoudo()时,将以调用hi时的实参为默认值,但也可以给howdoyoudo输入其他参数。

上面的例子运行后输出结果为:

这里新定义的howdoyoudo可以称作一个“闭包”。不少关于装饰器的blog都提到了这个概念,但其实没必要给它取一个多专业的名字。我们知道闭包是 函数内的函数 就可以了

当我们进行 def 的时候,我们在做什么?

这时,hi函数,打印一个字符串,同时返回一个字符串。

但hi函数本身也是一个对象,一个可以执行的对象。执行的方式是hi()。

这里hi和hi()有本质区别,

hi 代表了这个函数对象本身

hi() 则是运行了函数,得到函数的返回值。

作为对比,可以想象以下代码

此时也是b存在,可以正常使用。

我们定义2个函数,分别实现自加1, 自乘2,

再定义一个函数double_exec,内容是将某个函数调用2次

在调用double_exec时,可以将函数作为输入传进来

输出结果就是

7

27

同样,也可以将函数作为输出

输出结果为

6

10

有了以上两个核心操作,我们可以尝试构造装饰器了。

装饰器的目的: 在不修改原函数(类)定义代码的情况下,增加新的功能

试想一下,现在有一个原函数

在不修改原函数定义代码的情况下,如果想进行函数内容的添加,可以将这个函数作为一个整体,添加到这样的包裹中:

我们定义了一个my_decorator函数,这个函数进行了一种操作:

对传入的f,添加操作(运行前后增加打印),并把添加操作后的内容连同运行原函数的内容,一起传出

这个my_decorator,定义了一种增加前后打印内容的行为

调用my_decorator时,对这个行为进行了操作。

因此,new_function是一个在original_function上增加了前后打印行为的新函数

这个过程被可以被称作装饰。

这里已经可以发现,装饰器本身对于被装饰的函数是什么,是不需要考虑的。装饰器本身只定义了一种装饰行为,这个行为是通过装饰器内部的闭包函数()进行定义的。

运行装饰前后的函数,可以清晰看到装饰的效果

我们复现一下实际要用装饰器的情况,我们往往有一种装饰器,想应用于很多个函数,比如

此时,如果我们想给3个print函数都加上装饰器,需要这么做

实际调用的时候,就需要调用添加装饰器的函数名了

当然,也可以赋值给原函数名

这样至少不需要管理一系列装饰前后的函数。

同时,在不需要进行装饰的时候,需要把

全部删掉。

事实上,这样并不方便,尤其对于更复杂的装饰器来说

为此,python提供了一种简写方式

这个定义print1函数前的@my_decorator,相当于在定义完print1后,自动直接运行了

不论采用@my_decorator放在新函数前,还是显示地重写print1 = my_decorator(print1),都会存在一个问题:

装饰后的函数,名字改变了(其实不止名字,一系列的索引都改变了)

输出结果为:

这个现象的原因是,装饰行为本身,是通过构造了一个新的函数(例子中是wrap_func函数)来实现装饰这个行为的,然后把这个修改后的函数赋给了原函数名。

这样,会导致我们预期的被装饰函数的一些系统变量(比如__name__)发生了变化。

对此,python提供了解决方案:

经过这个行为后,被装饰函数的系统变量问题被解决了

输出结果为

刚才的例子都比较简单,被装饰的函数是没有参数的。如果被装饰的函数有参数,只需要在定义装饰行为时(事实上,这个才更通用),增加(*args, **kwargs)描述即可

之前的描述中可以感受到,对于例子中的装饰行为(前后加打印),函数被装饰后,本质上是调用了新的装饰函数wrap_func。

因此,如果原函数需要有输入参数传递,只需要在wrap_func(或其他任意名字的装饰函数)定义时,也增加参数输入(*args, **kwargs),并将这些参数,原封不动地传给待装饰函数f。

这种定义装饰行为的方式更具有普遍性,忘记之前的定义方式吧

我们试一下

输出

这里需要注意的是,如果按照以下的方式定义装饰器

那么以下语句将不会执行

因为装饰后实际的函数wrap_func(虽然名字被改成了原函数,系统参数也改成了原函数),运行到return f(*args, **kwargs) 的时候已经结束了

因为装饰器my_decorator本身也是可以输入的,因此,只需要在定义装饰器时,增加参数,并在后续函数中使用就可以了,比如

此时装饰器已经可以有输入参数了

输出

你可能发现,为什么不用简写版的方法了

因为以上代码会报错!!

究其原因,虽然

等价于

但是,

并不等价于

这本身和@语法有关,使用@my_decorator时,是系统在应用一个以单个函数作为参数的闭包函数。即,@是不能带参数的。

但是你应该发现了,之前的@wraps(f)不是带参数了吗?请仔细观察以下代码

通过一层嵌套,my_decorator_with_parma本质上是返回了一个参数仅为一个函数的函数(my_decorator),但因为my_decorator对my_decorator_with_parma来说是一个闭包,my_decorator_with_parma是可以带参数的。(这句话真绕)

通过以上的定义,我们再来看

可以这么理解,my_decorator_with_parma(msg='yusheng')的结果是原来的my_decorator函数,同时,因为my_decorator_with_parma可以传参,参数实际上是参与了my_decorator的(因为my_decorator对my_decorator_with_parma是闭包), my_decorator_with_parma(msg='yusheng') 全等于 一个有参数参加的my_decorator

因此,以上代码等价于有参数msg传递的

比较绕,需要理解一下,或者干脆强记这种范式:

以上范式包含函数的输入输出、装饰器的输入,可以应对大部分情况了。

实验一下:

输出

以上是一个log装饰器,利用datetime统计了函数的耗时,

并且,装饰器可以进行输出文件操作,如果给出了文件路径,则输出文件,否则就打印。

利用这个装饰器,可以灵活地进行耗时统计

不设置输出文件地址,则打印。运行结果为:

也可以输出到文件

输出结果为

同时在当前目录生成了一个test.log 文件,内容为:

以上的装饰器都是以函数形式出现的,但我们可以稍做改写,将装饰器以类的形式实现。

这个装饰器类Log 上个例子里的装饰器函数log功能是一样的,同时,这个装饰器类还可以作为基类被其他继承,进一步增加功能。

原文


网站栏目:关于python统计函数耗时的信息
网站链接:http://shouzuofang.com/article/doohchp.html

其他资讯