我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

回溯法全排列java代码 回溯算法全排列

JAVA怎么用回溯法打印出1,2,3,4的所有组合和排列

/*

成都创新互联长期为上千余家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为裕民企业提供专业的成都做网站、网站制作,裕民网站改版等技术服务。拥有10年丰富建站经验和众多成功案例,为您定制开发。

*组合 回溯

*a为源数据,调用时用f(a,0,"")

*/

void f(int[] a,int n,String v){

if(n==a.length){

System.out.println(v);

}else{

f(a,n+1,v);

f(a,n+1,v+","+a[n]);

}

}

_'>回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_

因为你把n和c 定义为static ,而且初始化为0,。数组也为静态的,一个类中静态的变量在这个类加载的时候就会执行,所以当你这类加载的时候,你的数组static int[] v = new int[n];

static int[] w = new int[n];

就已经初始化完毕,而且数组大小为0。在main方法里动态改变n的值是改变不了已经初始化完毕的数组的大小的,因为组已经加载完毕。

我建议你可以在定义n,c是就为其赋初值。比如(static int n=2 static int c=3)

Java或者C/C++怎么用回溯法解决最小长度电路板排列问题

以java为例,希望能够帮到你。

电路板排列问题

问题描述

将n块电路板以最佳排列方式插入带有n个插槽的机箱中。n块电路板的不同排列方式对应于不同的电路板插入方案。设B={1, 2, …, n}是n块电路板的集合,L={N1, N2, …, Nm}是连接这n块电路板中若干电路板的m个连接块。Ni是B的一个子集,且Ni中的电路板用同一条导线连接在一起。设x表示n块电路板的一个排列,即在机箱的第i个插槽中插入的电路板编号是x[i]。x所确定的电路板排列Density (x)密度定义为跨越相邻电路板插槽的最大连线数。

例:如图,设n=8, m=5,给定n块电路板及其m个连接块:B={1, 2, 3, 4, 5, 6, 7, 8},N1={4, 5, 6},N2={2, 3},N3={1, 3},N4={3, 6},N5={7, 8};其中两个可能的排列如图所示,则该电路板排列的密度分别是2,3。

左上图中,跨越插槽2和3,4和5,以及插槽5和6的连线数均为2。插槽6和7之间无跨越连线。其余插槽之间只有1条跨越连线。在设计机箱时,插槽一侧的布线间隙由电路板的排列的密度确定。因此,电路板排列问题要求对于给定的电路板连接条件(连接块),确定电路板的最佳排列,使其具有最小密度。

问题分析

电路板排列问题是NP难问题,因此不大可能找到解此问题的多项式时间算法。考虑采用回溯法系统的搜索问题解空间的排列树,找出电路板的最佳排列。设用数组B表示输入。B[i][j]的值为1当且仅当电路板i在连接块Nj中。设total[j]是连接块Nj中的电路板数。对于电路板的部分排列x[1:i],设now[j]是x[1:i]中所包含的Nj中的电路板数。由此可知,连接块Nj的连线跨越插槽i和i+1当且仅当now[j]0且now[j]!=total[j]。用这个条件来计算插槽i和i+1间的连线密度。

重点难点

算法具体实现如下:

//电路板排列问题 回溯法求解

#include "stdafx.h"

#include iostream

#include fstream

using namespace std;

ifstream fin("5d11.txt");

class Board

{

friend int Arrangement(int **B, int n, int m, int bestx[]);

private:

void Backtrack(int i,int cd);

int n,      //电路板数

m,      //连接板数

*x,     //当前解

*bestx,//当前最优解

bestd,  //当前最优密度

*total, //total[j]=连接块j的电路板数

*now,   //now[j]=当前解中所含连接块j的电路板数

**B;    //连接块数组

};

template class Type

inline void Swap(Type a, Type b);

int Arrangement(int **B, int n, int m, int bestx[]);

int main()

{

int m = 5,n = 8;

int bestx[9];

//B={1,2,3,4,5,6,7,8}

//N1={4,5,6},N2={2,3},N3={1,3},N4={3,6},N5={7,8}

cout"m="m",n="nendl;

cout"N1={4,5,6},N2={2,3},N3={1,3},N4={3,6},N5={7,8}"endl;

cout"二维数组B如下:"endl;

//构造B

int **B = new int*[n+1];

for(int i=1; i=n; i++)

{

B[i] = new int[m+1];

}

for(int i=1; i=n; i++)

{

for(int j=1; j=m ;j++)

{

finB[i][j];

coutB[i][j]" ";

}

coutendl;

}

cout"当前最优密度为:"Arrangement(B,n,m,bestx)endl;

cout"最优排列为:"endl;

for(int i=1; i=n; i++)

{

coutbestx[i]" ";

}

coutendl;

for(int i=1; i=n; i++)

{

delete[] B[i];

}

delete[] B;

return 0;

}

//核心代码

void Board::Backtrack(int i,int cd)//回溯法搜索排列树

{

if(i == n)

{

for(int j=1; j=n; j++)

{

bestx[j] = x[j];

}

bestd = cd;

}

else

{

for(int j=i; j=n; j++)

{

//选择x[j]为下一块电路板

int ld = 0;

for(int k=1; k=m; k++)

{

now[k] += B[x[j]][k];

if(now[k]0  total[k]!=now[k])

{

ld ++;

}

}

//更新ld

if(cdld)

{

ld = cd;

}

if(ldbestd)//搜索子树

{

Swap(x[i],x[j]);

Backtrack(i+1,ld);

Swap(x[i],x[j]);

//恢复状态

for(int k=1; k=m; k++)

{

now[k] -= B[x[j]][k];

}

}

}

}

}

int Arrangement(int **B, int n, int m, int bestx[])

{

Board X;

//初始化X

X.x = new int[n+1];

X.total = new int[m+1];

X.now = new int[m+1];

X.B = B;

X.n = n;

X.m = m;

X.bestx = bestx;

X.bestd = m+1;

//初始化total和now

for(int i=1; i=m; i++)

{

X.total[i] = 0;

X.now[i] = 0;

}

//初始化x为单位排列并计算total

for(int i=1; i=n; i++)

{

X.x[i] = i;

for(int j=1; j=m; j++)

{

X.total[j] += B[i][j];

}

}

//回溯搜索

X.Backtrack(1,0);

delete []X.x;

delete []X.total;

delete []X.now;

return X.bestd;

}

template class Type

inline void Swap(Type a, Type b)

{

Type temp=a;

a=b;

b=temp;

}

算法效率

在解空间排列树的每个节点处,算法Backtrack花费O(m)计算时间为每个儿子节点计算密度。因此计算密度所消耗的总计算时间为O(mn!)。另外,生成排列树需要O(n!)时间。每次更新当前最优解至少使bestd减少1,而算法运行结束时bestd=0。因此最优解被更新的额次数为O(m)。更新最优解需要O(mn)时间。综上,解电路板排列问题的回溯算法Backtrack所需要的计算时间为O(mn!)。

程序运行结果为:


网页名称:回溯法全排列java代码 回溯算法全排列
网站网址:http://shouzuofang.com/article/doojhoo.html

其他资讯