十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
python 不是很了解,我说一下在 .Net 中的区别,看看对你有没有帮助
成都创新互联公司专注于企业成都全网营销、网站重做改版、加格达奇网站定制设计、自适应品牌网站建设、HTML5、成都做商城网站、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为加格达奇等各大城市提供网站开发制作服务。
在 .Net(C#、C++、VB、F#)中,Len 是函数,而 Length 是 String 对象的属性,二者在运行结果上完全相同,但因 Length 是 String 对象的属性,所以不能用于 Nothing 对象,用于 Nothing 对象时会出现 对象未实例化 的错误。因此,在 .Net 中建议:为了避免出错,当检测变量的长度时应使用Len()函数,避免出现对象未实例化错误;而当检测控件的 Text 的长度时,则应使用 Length 属性,因其更适应 .Net 面向对象的思维。
1.1 例如:print(hex(2))案例
1.2 输出函数:print(hex(2))
1.3 输出结果:0x2
1.4 解析说明:返回16进制的数。
2.1 例如:print(chr(10))案例
2.2 输出函数:print(chr(10))
2.3 输出结果:0o12
2.4 解析说明:返回当前整数对应的ASCll码
3.1 例如:print(ord("b"))案例
3.2 输出函数:print(ord("b"))
3.3 输出结果:98
3.4 解析说明:返回当前ASCll码的10进制数
4.1 例如:print(chr(97))
4.2 输出函数:print(chr(97))
4.3 输出结果:b
4.4 解析说明:返回当前ASCll码的10进制数。
案例一:给你一个字符串,s = 'hello kitty'
1.1 输出函数:print(s.capitalize())
1.2 输出结果:0x2
1.3 解析说明:返回16进制的数。
2.1输出函数:print(s.replace('kitty','kuang'))
2.2 输出结果:hello kuang
2.3 解析说明:替换功能,将kitty换成kuang。
2.4 输出函数:print(s.replace('4','KK'))
2.5 输出结果:12KK12KK
2.6 解析说明:所有的4都替换成KK
2.7 输出函数:print(s.replace('4','KK'))
2.8 输出结果:12KK12KK124
2.9 解析说明:将前两个的4替换成go
案例一:给你一个字符串,ip = '192.168.1.1'
3.1 输出函数:print(ip.split(','))
3.2 输出结果:['192.168.1.1']
3.3 解析说明:将字符串分割成列表
案例一:给你一个字符串,ip = '192.168.1.1'
3.3 输出函数:print(ip.split(',',2))
3.4 输出结果:['192.168.1.1']
3.5 解析说明:从第二个开始分割成列表
数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据,脏数据一般是指不符合要求,以及不能直接进行响应分析的数据。在常见的数据挖掘工作中,脏数据包括如下内容:
数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果的不准确,以下从缺失值产生的原因及影响等方面展开分析。
(1)缺失值产生的原因
1)有些信息暂时无法获取,或者获取信息的代价太大。
2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障等非人为原因而丢失。
3)属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。
(2)缺失值的影响
1)数据挖掘建模将丢失大量的有用信息。
2)数据挖掘模型所表现出的不确定性更加显著,模型中蕴含的规律更难把握。
3)包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。
(3)缺失值的分析
使用简单的统计分析,可以得到含有缺失值的属性的个数,以及每个属性的未缺失数、缺失数与缺失率等。
异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
异常值是指样本中的个别值,其数据明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点分析。
(1)简单计量分析
可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理的范围。如客户年龄的最大值为199岁,则该变量的取值存在异常。
(2)3σ原则
如果数据服从正态分布,在3σ原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3σ之外的值出现的概率为P(|x-μ|3σ)≤0.003,属于极个别小概率事件。
如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。
(3)箱型图分析
箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL-1.5IQR或大于Qu+1.5IQR的值。QL成为下四分位数,表示全部观察值中有四分之的数据取值比它小;Qu称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR称为四分位数间距,是上四分位数与下四分位数之差,其间包含了全部观察值的一半。
箱型图依据实际数据绘制,没有对数据作任何限制性要求(如服从某种特定的分布形式),它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响。由此可见,箱型图识别异常值得结果比较客观,在识别异常值方面有一定的优越性。
在餐饮系统中的销量额数据可能出现缺失值和异常值,如下表所示:
分析餐饮系统日销售额数据可以发现,其中有部分数据是缺失的,但是如果数据记录和属性较多,使用人工分辨的方法就不切合实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率。
在Python的Pandas库中,只需要读入数据,然后使用describe()函数就可以查看数据的基本情况。
运行结果如下:
其中count是非空数值,通过len(data)可以知道数据记录为201条,因此缺失值数为1。另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。更直观地展示这些数据,并且可以检测异常值的方法是使用箱型图。
运行程序,其结果为“缺失值个数为:1”,同时可以得到如上图所示的箱型图。
从图中可以看出,箱型图中超过上下界的7个销售额数据可能为异常值。结合具体业务可以把865、4060.3、4065.2归为正常值,将22、51、60、6607.4、9106.44归为异常值。最后确定过滤规则为:日销量在400以下5000以上则属于异常数据,编写过滤程序,进行后续处理。
数据不一致性是指数据的矛盾性、不相容性。直接对不一致的数据进行挖掘,可能会产生与实际相违背的挖掘结果。
在数据挖掘过程中,不一致数据的产生主要发生在数据集成过程中,这可能是由于从不同的数据源、对于重新存放的数据未能进行一致性造成的。例如,两张表中都存储了用户的电话号码,但在用户的电话号码发生改变时只更新了一张表中的数据,那么这两张表中就有了不一致的数据。