我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python函数三元,python 三元运算

python中三元操作符

这句用了以逻辑实现分支的起点原理...

创新互联公司专注于梅州企业网站建设,响应式网站开发,商城网站建设。梅州网站建设公司,为梅州等地区提供建站服务。全流程按需定制,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务

当xy成立,xy返回真, 真 and [x]返回[x], [x][0]得x

当xy不成立,xy返回假 , 假 and [x]返回假, 假 or [y]返回[y], [y][0]得y

py没有三元,但有分支表达式,整句可改写成

(x if xy else y)

python里面什么是三元运算符?

它指的是一个完整的运算符,包含有3个操作数的运算符。比如,条件运算符“?:”就是一个典型的三元符。

如何用python计算三元方程

(1) variable = a if exper else b

(2)variable = (exper and [b] or [c])[0]

(2) variable = exper and b or c

上面三种用法都可以达到目的,类似C语言中 variable = exper ? b : c;即:如果exper表达式的值为true则variable = b,否则,variable = c

例如:

a,b=1,2

max = (a if a b else b)

max = (a b and [a] or [b])[0] #list

max = (a b and a or b)

现在大部分高级语言都支持“?”这个三元运算符(ternary operator),它对应的表达式如下:condition ? value if true : value if false。很奇怪的是,这么常用的运算符python居然不支持!诚然,我们可以通过if-else语句表达,但是本来一行代码可以完成的非要多行,明显不够简洁。没关系,在python里其实还是有对应的表达方式的。

python函数高级

一、函数的定义

函数是指将一组语句的集合通过一个名字(函数名)封装起来,想要执行这个函数,只需要调用函数名即可

特性:

减少重复代码

使程序变得可扩展

使程序变得易维护

二、函数的参数

2.1、形参和实参数

形参,调用时才会存在的值

实惨,实际存在的值

2.2、默认参数

定义:当不输入参数值会有一个默认的值,默认参数要放到最后

2.3、 关键参数

定义: 正常情况下,给函数传参数要安装顺序,不想按顺序可以用关键参数,只需要指定参数名即可,(指定了参数名的就叫关键参数),但是要求是关键参数必须放在位置参数(以位置顺序确定对应的参数)之后

2.4、非固定参数

定义: 如你的函数在传入参数时不确定需要传入多少个参数,就可以使用非固定参数

# 通过元组形式传递

# 通过列表形式传递

# 字典形式(通过k,value的方式传递)

# 通过变量的方式传递

三、函数的返回值

作用:

返回函数执行结果,如果没有设置,默认返回None

终止函数运行,函数遇到return终止函数

四、变量的作用域

全局变量和局部变量

在函数中定义的变量叫局部变量,在程序中一开始定义的变量叫全局变量

全局变量作用域整个程序,局部变量作用域是定义该变量的函数

当全局变量与局部变量同名是,在定义局部变量的函数内,局部变量起作用,其他地方全局变量起作用

同级的局部变量不能互相调用

想要函数里边的变量设置成全局变量,可用global进行设置

五、特殊函数

5.1、嵌套函数

定义: 嵌套函数顾名思义就是在函数里边再嵌套一层函数

提示 在嵌套函数里边调用变量是从里往外依次调用,意思就是如果需要调用的变量在当前层没有就会去外层去调用,依次内推

匿名函数

基于Lambda定义的函数格式为: lambda 参数:函数体

参数,支持任意参数。

匿名函数适用于简单的业务处理,可以快速并简单的创建函数。

# 与三元运算结合

5.3、高阶函数

定义:变量可以指向函数,函数的参数可以接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数称之为高阶函数 只需要满足一下任意一个条件,即是高阶函数

接收一个或多个函数作为输入

return返回另一个函数

5.4、递归函数

定义:一个函数可以调用其他函数,如果一个函数调用自己本身,这个函数就称为递归函数

在默认情况下Python最多能递归1000次,(这样设计师是为了防止被内存被撑死)可以通过sys.setrecursionlimit(1500)进行修改

递归实现过程是先一层一层的进,然后在一层一层的出来

必须有一个明确的条件结束,要不然就是一个死循环了

每次进入更深层次,问题规模都应该有所减少

递归执行效率不高,递归层次过多会导致站溢出

# 计算4的阶乘 4x3x2x1

# 打印数字从1-100

5.5、闭包现象

定义:内层函数调用外层函数的变量,并且内存函数被返回到外边去了

闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域

用Python或MATLAB如何画三元平方和函数曲线???

Python代码 import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = Axes3D(fig)X = np.arange(-4, 4, 0.25)Y = np.arange(-4, 4, 0.25)X, Y = np.meshgrid(X, Y)R = np.sqrt(X**2 + Y**2)Z = np.sin(R)ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')plt.show() 运行结果:

万字干货,Python语法大合集,一篇文章带你入门

这份资料非常纯粹,只有Python的基础语法,专门针对想要学习Python的小白。

Python中用#表示单行注释,#之后的同行的内容都会被注释掉。

使用三个连续的双引号表示多行注释,两个多行注释标识之间内容会被视作是注释。

Python当中的数字定义和其他语言一样:

我们分别使用+, -, *, /表示加减乘除四则运算符。

这里要注意的是,在Python2当中,10/3这个操作会得到3,而不是3.33333。因为除数和被除数都是整数,所以Python会自动执行整数的计算,帮我们把得到的商取整。如果是10.0 / 3,就会得到3.33333。目前Python2已经不再维护了,可以不用关心其中的细节。

但问题是Python是一个 弱类型 的语言,如果我们在一个函数当中得到两个变量,是无法直接判断它们的类型的。这就导致了同样的计算符可能会得到不同的结果,这非常蛋疼。以至于程序员在运算除法的时候,往往都需要手工加上类型转化符,将被除数转成浮点数。

在Python3当中拨乱反正,修正了这个问题,即使是两个整数相除,并且可以整除的情况下,得到的结果也一定是浮点数。

如果我们想要得到整数,我们可以这么操作:

两个除号表示 取整除 ,Python会为我们保留去除余数的结果。

除了取整除操作之外还有取余数操作,数学上称为取模,Python中用%表示。

Python中支持 乘方运算 ,我们可以不用调用额外的函数,而使用**符号来完成:

当运算比较复杂的时候,我们可以用括号来强制改变运算顺序。

Python中用首字母大写的True和False表示真和假。

用and表示与操作,or表示或操作,not表示非操作。而不是C++或者是Java当中的, || 和!。

在Python底层, True和False其实是1和0 ,所以如果我们执行以下操作,是不会报错的,但是在逻辑上毫无意义。

我们用==判断相等的操作,可以看出来True==1, False == 0.

我们要小心Python当中的bool()这个函数,它并不是转成bool类型的意思。如果我们执行这个函数,那么 只有0会被视作是False,其他所有数值都是True :

Python中用==判断相等,表示大于,=表示大于等于, 表示小于,=表示小于等于,!=表示不等。

我们可以用and和or拼装各个逻辑运算:

注意not,and,or之间的优先级,其中not and or。如果分不清楚的话,可以用括号强行改变运行顺序。

关于list的判断,我们常用的判断有两种,一种是刚才介绍的==,还有一种是is。我们有时候也会简单实用is来判断,那么这两者有什么区别呢?我们来看下面的例子:

Python是全引用的语言,其中的对象都使用引用来表示。is判断的就是 两个引用是否指向同一个对象 ,而==则是判断两个引用指向的具体内容是否相等。举个例子,如果我们把引用比喻成地址的话,is就是判断两个变量的是否指向同一个地址,比如说都是沿河东路XX号。而==则是判断这两个地址的收件人是否都叫张三。

显然,住在同一个地址的人一定都叫张三,但是住在不同地址的两个人也可以都叫张三,也可以叫不同的名字。所以如果a is b,那么a == b一定成立,反之则不然。

Python当中对字符串的限制比较松, 双引号和单引号都可以表示字符串 ,看个人喜好使用单引号或者是双引号。我个人比较喜欢单引号,因为写起来方便。

字符串也支持+操作,表示两个字符串相连。除此之外,我们把两个字符串写在一起,即使没有+,Python也会为我们拼接:

我们可以使用[]来查找字符串当中某个位置的字符,用 len 来计算字符串的长度。

我们可以在字符串前面 加上f表示格式操作 ,并且在格式操作当中也支持运算,比如可以嵌套上len函数等。不过要注意,只有Python3.6以上的版本支持f操作。

最后是None的判断,在Python当中None也是一个对象, 所有为None的变量都会指向这个对象 。根据我们前面所说的,既然所有的None都指向同一个地址,我们需要判断一个变量是否是None的时候,可以使用is来进行判断,当然用==也是可以的,不过我们通常使用is。

理解了None之后,我们再回到之前介绍过的bool()函数,它的用途其实就是判断值是否是空。所有类型的 默认空值会被返回False ,否则都是True。比如0,"",[], {}, ()等。

除了上面这些值以外的所有值传入都会得到True。

Python当中的标准输入输出是 input和print 。

print会输出一个字符串,如果传入的不是字符串会自动调用__str__方法转成字符串进行输出。 默认输出会自动换行 ,如果想要以不同的字符结尾代替换行,可以传入end参数:

使用input时,Python会在命令行接收一行字符串作为输入。可以在input当中传入字符串,会被当成提示输出:

Python支持 三元表达式 ,但是语法和C++不同,使用if else结构,写成:

上段代码等价于:

Python中用[]表示空的list,我们也可以直接在其中填充元素进行初始化:

使用append和pop可以在list的末尾插入或者删除元素:

list可以通过[]加上下标访问指定位置的元素,如果是负数,则表示 倒序访问 。-1表示最后一个元素,-2表示倒数第二个,以此类推。如果访问的元素超过数组长度,则会出发 IndexError 的错误。

list支持切片操作,所谓的切片则是从原list当中 拷贝 出指定的一段。我们用start: end的格式来获取切片,注意,这是一个 左闭右开区间 。如果留空表示全部获取,我们也可以额外再加入一个参数表示步长,比如[1:5:2]表示从1号位置开始,步长为2获取元素。得到的结果为[1, 3]。如果步长设置成-1则代表反向遍历。

如果我们要指定一段区间倒序,则前面的start和end也需要反过来,例如我想要获取[3: 6]区间的倒序,应该写成[6:3:-1]。

只写一个:,表示全部拷贝,如果用is判断拷贝前后的list会得到False。可以使用del删除指定位置的元素,或者可以使用remove方法。

insert方法可以 指定位置插入元素 ,index方法可以查询某个元素第一次出现的下标。

list可以进行加法运算,两个list相加表示list当中的元素合并。 等价于使用extend 方法:

我们想要判断元素是否在list中出现,可以使用 in关键字 ,通过使用len计算list的长度:

tuple和list非常接近,tuple通过()初始化。和list不同, tuple是不可变对象 。也就是说tuple一旦生成不可以改变。如果我们修改tuple,会引发TypeError异常。

由于小括号是有改变优先级的含义,所以我们定义单个元素的tuple, 末尾必须加上逗号 ,否则会被当成是单个元素:

tuple支持list当中绝大部分操作:

我们可以用多个变量来解压一个tuple:

解释一下这行代码:

我们在b的前面加上了星号, 表示这是一个list 。所以Python会在将其他变量对应上值的情况下,将剩下的元素都赋值给b。

补充一点,tuple本身虽然是不可变的,但是 tuple当中的可变元素是可以改变的 。比如我们有这样一个tuple:

我们虽然不能往a当中添加或者删除元素,但是a当中含有一个list,我们可以改变这个list类型的元素,这并不会触发tuple的异常:

dict也是Python当中经常使用的容器,它等价于C++当中的map,即 存储key和value的键值对 。我们用{}表示一个dict,用:分隔key和value。

对 。我们用{}表示一个dict,用:分隔key和value。

dict的key必须为不可变对象,所以 list、set和dict不可以作为另一个dict的key ,否则会抛出异常:

我们同样用[]查找dict当中的元素,我们传入key,获得value,等价于get方法。

我们可以call dict当中的keys和values方法,获取dict当中的所有key和value的集合,会得到一个list。在Python3.7以下版本当中,返回的结果的顺序可能和插入顺序不同,在Python3.7及以上版本中,Python会保证返回的顺序和插入顺序一致:

我们也可以用in判断一个key是否在dict当中,注意只能判断key。

如果使用[]查找不存在的key,会引发KeyError的异常。如果使用 get方法则不会引起异常,只会得到一个None :

setdefault方法可以 为不存在的key 插入一个value,如果key已经存在,则不会覆盖它:

我们可以使用update方法用另外一个dict来更新当前dict,比如a.update(b)。对于a和b交集的key会被b覆盖,a当中不存在的key会被插入进来:

我们一样可以使用del删除dict当中的元素,同样只能传入key。

Python3.5以上的版本支持使用**来解压一个dict:

set是用来存储 不重复元素 的容器,当中的元素都是不同的,相同的元素会被删除。我们可以通过set(),或者通过{}来进行初始化。注意当我们使用{}的时候,必须要传入数据,否则Python会将它和dict弄混。

set当中的元素也必须是不可变对象,因此list不能传入set。

可以调用add方法为set插入元素:

set还可以被认为是集合,所以它还支持一些集合交叉并补的操作。

set还支持 超集和子集的判断 ,我们可以用大于等于和小于等于号判断一个set是不是另一个的超集或子集:

和dict一样,我们可以使用in判断元素在不在set当中。用copy可以拷贝一个set。

Python当中的判断语句非常简单,并且Python不支持switch,所以即使是多个条件,我们也只能 罗列if-else 。

我们可以用in来循环迭代一个list当中的内容,这也是Python当中基本的循环方式。

如果我们要循环一个范围,可以使用range。range加上一个参数表示从0开始的序列,比如range(10),表示[0, 10)区间内的所有整数:

如果我们传入两个参数,则 代表迭代区间的首尾 。

如果我们传入第三个元素,表示每次 循环变量自增的步长 。

如果使用enumerate函数,可以 同时迭代一个list的下标和元素 :

while循环和C++类似,当条件为True时执行,为false时退出。并且判断条件不需要加上括号:

Python当中使用 try和except捕获异常 ,我们可以在except后面限制异常的类型。如果有多个类型可以写多个except,还可以使用else语句表示其他所有的类型。finally语句内的语法 无论是否会触发异常都必定执行 :

在Python当中我们经常会使用资源,最常见的就是open打开一个文件。我们 打开了文件句柄就一定要关闭 ,但是如果我们手动来编码,经常会忘记执行close操作。并且如果文件异常,还会触发异常。这个时候我们可以使用with语句来代替这部分处理,使用with会 自动在with块执行结束或者是触发异常时关闭打开的资源 。

以下是with的几种用法和功能:

凡是可以使用in语句来迭代的对象都叫做 可迭代对象 ,它和迭代器不是一个含义。这里只有可迭代对象的介绍,想要了解迭代器的具体内容,请移步传送门:

Python——五分钟带你弄懂迭代器与生成器,夯实代码能力

当我们调用dict当中的keys方法的时候,返回的结果就是一个可迭代对象。

我们 不能使用下标来访问 可迭代对象,但我们可以用iter将它转化成迭代器,使用next关键字来获取下一个元素。也可以将它转化成list类型,变成一个list。

使用def关键字来定义函数,我们在传参的时候如果指定函数内的参数名, 可以不按照函数定义的顺序 传参:

可以在参数名之前加上*表示任意长度的参数,参数会被转化成list:

也可以指定任意长度的关键字参数,在参数前加上**表示接受一个dict:

当然我们也可以两个都用上,这样可以接受任何参数:

传入参数的时候我们也可以使用*和**来解压list或者是dict:

Python中的参数 可以返回多个值 :

函数内部定义的变量即使和全局变量重名,也 不会覆盖全局变量的值 。想要在函数内部使用全局变量,需要加上 global 关键字,表示这是一个全局变量:

Python支持 函数式编程 ,我们可以在一个函数内部返回一个函数:

Python中可以使用lambda表示 匿名函数 ,使用:作为分隔,:前面表示匿名函数的参数,:后面的是函数的返回值:

我们还可以将函数作为参数使用map和filter,实现元素的批量处理和过滤。关于Python中map、reduce和filter的使用,具体可以查看之前的文章:

五分钟带你了解map、reduce和filter

我们还可以结合循环和判断语来给list或者是dict进行初始化:

使用 import语句引入一个Python模块 ,我们可以用.来访问模块中的函数或者是类。

我们也可以使用from import的语句,单独引入模块内的函数或者是类,而不再需要写出完整路径。使用from import *可以引入模块内所有内容(不推荐这么干)

可以使用as给模块内的方法或者类起别名:

我们可以使用dir查看我们用的模块的路径:

这么做的原因是如果我们当前的路径下也有一个叫做math的Python文件,那么 会覆盖系统自带的math的模块 。这是尤其需要注意的,不小心会导致很多奇怪的bug。

我们来看一个完整的类,相关的介绍都在注释当中

以上内容的详细介绍之前也有过相关文章,可以查看:

Python—— slots ,property和对象命名规范

下面我们来看看Python当中类的使用:

这里解释一下,实例和对象可以理解成一个概念,实例的英文是instance,对象的英文是object。都是指类经过实例化之后得到的对象。

继承可以让子类 继承父类的变量以及方法 ,并且我们还可以在子类当中指定一些属于自己的特性,并且还可以重写父类的一些方法。一般我们会将不同的类放在不同的文件当中,使用import引入,一样可以实现继承。

我们创建一个蝙蝠类:

我们再创建一个蝙蝠侠的类,同时继承Superhero和Bat:

执行这个类:

我们可以通过yield关键字创建一个生成器,每次我们调用的时候执行到yield关键字处则停止。下次再次调用则还是从yield处开始往下执行:

除了yield之外,我们还可以使用()小括号来生成一个生成器:

关于生成器和迭代器更多的内容,可以查看下面这篇文章:

五分钟带你弄懂迭代器与生成器,夯实代码能力

我们引入functools当中的wraps之后,可以创建一个装饰器。装饰器可以在不修改函数内部代码的前提下,在外面包装一层其他的逻辑:

装饰器之前也有专门的文章详细介绍,可以移步下面的传送门:

一文搞定Python装饰器,看完面试不再慌

不知道有多少小伙伴可以看到结束,原作者的确非常厉害,把Python的基本操作基本上都囊括在里面了。如果都能读懂并且理解的话,那么Python这门语言就算是入门了。

如果你之前就有其他语言的语言基础,我想本文读完应该不用30分钟。当然在30分钟内学会一门语言是不可能的,也不是我所提倡的。但至少通过本文我们可以做到熟悉Python的语法,知道大概有哪些操作,剩下的就要我们亲自去写代码的时候去体会和运用了。

根据我的经验,在学习一门新语言的前期,不停地查阅资料是免不了的。希望本文可以作为你在使用Python时候的查阅文档。

最后,我这里有各种免费的编程类资料,有需要的及时私聊我,回复"学习",分享给大家,正在发放中............


名称栏目:python函数三元,python 三元运算
网站网址:http://shouzuofang.com/article/dsspijp.html

其他资讯