我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

图像处理之DCT图像压缩(基于c++opencv实现)-创新互联

是老师布置的作业,拖到ddl才开始,opencv也才刚接触,有自己结合百度的一点理解,如有误,请谅解!

站在用户的角度思考问题,与客户深入沟通,找到牙克石网站设计与牙克石网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计、做网站、企业官网、英文网站、手机端网站、网站推广、主机域名、网页空间、企业邮箱。业务覆盖牙克石地区。DCT图像压缩

先贴一段在matlab上实现的代码,这个在网上都可以查到,就不赘述了

I=imread('cameraman.tif');
I=im2double(I);%将图像转换为双精度
T=dctmtx(8);% 返回8*8的DCT变换矩阵
B=blkproc(I,[8 8],'P1*x*P2',T,T');
% x就是每一个分成的8*8大小的块,P1*x*P2相当于像素块的处理函数,p1=T p2=T’,
%也就是fun=p1*x*p2'=T*x*T'的功能是进行离散余弦变换
mask=   [1 1 1 1 0 0 0 0 
         1 1 1 0 0 0 0 0 
         1 1 0 0 0 0 0 0 
         1 0 0 0 0 0 0 0 
         0 0 0 0 0 0 0 0 
         0 0 0 0 0 0 0 0 
         0 0 0 0 0 0 0 0 
         0 0 0 0 0 0 0 0];% 保留左上角十个系数
B2=blkproc(B,[8 8],'P1.*x',mask);%舍弃每个块中的高频系数,达到图像压缩的目的
I2=blkproc(B2,[8 8],'P1*x*P2',T',T); %进行反余弦变换,得到压缩后的图象
figure(1);
subplot(1,4,1),imshow(I);
subplot(1,4,2),imshow(B);
subplot(1,4,3),imshow(B2);
subplot(1,4,4),imshow(I2);
Z  = imabsdiff(I,I2);
figure(2);
imshow(Z);

思路如下:

先划分处理块大小,对每个块分别进行DCT变换,再舍弃每个块中的高频系数,再进行反余弦变换,得到压缩图像(即先使用DCT函数将低频的点都集中在左上角,再对右下角的高频数据丢弃)

老师要求我们用c++ + opencv实现。配置环境真的是。。。。

试过用clion和vscode配,失败了,还是老老实实用vs2019吧。

附 大佬配置的视频,十分感谢!

https://www.bilibili.com/video/BV1mE411P76Mp=1&vd_source=393e209b3fa00543c23db5753b265d30

下面是用c++ 实现的代码 RGB图(下面有灰度图,其实差不多)
#include 
#includeusing namespace cv;
using namespace std;

double T = 100;

int main()
{
    Mat src = imread("D:\\Matlab\\toolbox\\images\\imdata\\kids.tif");//先读入图像,在这里读入的是RGB图像,有三个通道
   

    
 
    imshow("clock", src);//先显示图像



    int big;
    big = 8;//定义一下掩盖矩阵的大小
    vectormv;
    split(src, mv);//通道分割



    Mat b = Mat_(mv[0]);
    Mat g = Mat_(mv[1]);
    Mat r = Mat_(mv[2]);

    b.convertTo(b, CV_32F, 1.0 / 255);
    g.convertTo(g, CV_32F, 1.0 / 255);
    r.convertTo(r, CV_32F, 1.0 / 255);

    //要进行DCT变换先转换成float,我也不知道为什么
    Mat bDCT = Mat_(b); //这里先复制矩阵,后面有用
    Mat gDCT = Mat_(g);
    Mat rDCT = Mat_(r);
    int w = b.rows;
    int h = b.cols;//三个通道的大小都是一样的,所以只要取一个就好了
  



    //DCT变换每个通道都做一遍
 
    for (int i1 = 0; i1< (h / big); i1++) {//注意这里的取值和我们平常遇到的x,y不一样 一张宽度x像素、高度y像素的灰度图保存在一个y * x的矩阵中。
        for (int j1 = 0; j1< (w / big); j1++) {
            dct(b(Rect(i1 * big, j1 * big, big, big)), bDCT(Rect(i1 * big, j1 * big, big, big)));//Rect是滑块函数,从指定位置取指定大小的矩阵,这就是跟Matlab分块处理一样

        }
    }

    //发现有的图像不是长宽相同的,所以取整除,而没有取到数据,跟之前相同就行了,复制的用处就来啦


    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            dct(g(Rect(i1 * big, j1 * big, big, big)), gDCT(Rect(i1 * big, j1 * big, big, big)));

        }
    }

    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            dct(r(Rect(i1 * big, j1 * big, big, big)), rDCT(Rect(i1 * big, j1 * big, big, big)));

        }
    }
    


    int mask[8][8] = {//定义掩盖矩阵
        {1, 1, 1, 1, 0, 0, 0, 0},
        {1, 1, 1, 0, 0, 0, 0, 0},
        {1, 1, 0, 0, 0, 0, 0, 0},
        {1, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        
    };

    //根据mask 矩阵 去掉右下角的数据,同样对每个通道做一次
    for (int i1 = 0; i1< (bDCT.rows / big); i1++) 
    {
        for (int j1 = 0; j1< (bDCT.cols / big); j1++) 
        {

            for (int i = 0; i< big; i++)
            {

                for (int j = 0; j< big; j++)
                {
                    if (mask[i % big][j % big] == 0)
                    {
                        bDCT.at(i1 * big + i, j1 * big + j) = 0;//这里和mask矩阵相乘是同一个意思,同时扫描mask和DCT变换后的矩阵,当mask矩阵扫描到的值为0时,把DCT矩阵也置零,去掉高频数据
                    }
                }
            }
        }
    }

    for (int i1 = 0; i1< (gDCT.rows / big); i1++)
    {
        for (int j1 = 0; j1< (gDCT.cols / big); j1++)
        {

            for (int i = 0; i< big; i++)
            {

                for (int j = 0; j< big; j++)
                {
                    if (mask[i % big][j % big] == 0)
                    {
                        gDCT.at(i1 * big + i, j1 * big + j) = 0;;
                    }
                }
            }
        }
    }    for (int i1 = 0; i1< (rDCT.rows / big); i1++)
    {
        for (int j1 = 0; j1< (rDCT.cols / big); j1++)
        {

            for (int i = 0; i< big; i++)
            {

                for (int j = 0; j< big; j++)
                {
                    if (mask[i % big][j % big] == 0)
                    {
                        rDCT.at(i1 * big + i, j1 * big + j) = 0;;
                    }
                }
            }
        }
    }


    Mat iDctb = bDCT;
    Mat iDctg = gDCT;
    Mat iDctr = rDCT;

    //进行逆DCT变换,同做三次
    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            idct(bDCT(Rect(i1 * big, j1 * big, big, big)), iDctb(Rect(i1 * big, j1 * big, big, big)));

        }
    }
    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            idct(gDCT(Rect(i1 * big, j1 * big, big, big)), iDctg(Rect(i1 * big, j1 * big, big, big)));

        }
    }
    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            idct(rDCT(Rect(i1 * big, j1 * big, big, big)), iDctr(Rect(i1 * big, j1 * big, big, big)));

        }
    }

    mv[0] = iDctb;
    mv[1] = iDctg;
    mv[2] = iDctr;
    Mat dst;
    merge(mv, dst);//通道合并


    imshow("DstImage",dst);//显示图像

    waitKey(0);

    return 0;

}
效果如下:

原图:

压缩后:

如果感觉不明显,可以减少mask矩阵1的个数。

灰度图
int main()
{
    Mat src = imread("D:\\Matlab\\toolbox\\images\\imdata\\coins.png",0);
    imshow("clock", src);
    src = Mat_(src);
    int w = src.rows;
    int h = src.cols;
    
   

   

    int big;
    big = 8;
    src.convertTo(src, CV_32F, 1.0 / 255);
    Mat srcDCT = Mat_(src);

    
   

    
    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            dct(src(Rect(i1 * big, j1 * big, big, big)),srcDCT(Rect(i1 * big, j1 * big, big, big)));
          
        }
    }


    int mask[8][8] = {
        {1, 1, 1, 1, 0, 0, 0, 0},
        {1, 1, 1, 0, 0, 0, 0, 0},
        {1, 1, 0, 0, 0, 0, 0, 0},
        {1, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},

    };
    double s;  
    for (int i1 = 0; i1< (srcDCT.rows / big); i1++) {
        for (int j1 = 0; j1< (srcDCT.cols / big); j1++) {

            for (int i = 0; i< big; i++)
            {

                for (int j = 0; j< big; j++)
                {
                    if (mask[i % big][j % big] == 0) {
                        srcDCT.at(i1 * big + i, j1 * big + j) = 0;;
                        

                    }
                    else {
                        s = 0;
                    }
                }
            }
        }
    }
   Mat iDct1 = srcDCT;
    
    for (int i1 = 0; i1< (h / big); i1++) {
        for (int j1 = 0; j1< (w / big); j1++) {
            idct(srcDCT(Rect(i1 * big, j1 * big, big, big)), iDct1(Rect(i1 * big, j1 * big, big, big)));

        }
    }

    imshow("c", srcDCT);




    imshow("DstImage",iDct1);

    waitKey(0);

    return 0;

}

感谢观看,如有误,请不吝赐教。

你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧


本文题目:图像处理之DCT图像压缩(基于c++opencv实现)-创新互联
文章分享:http://shouzuofang.com/article/gphgo.html

其他资讯