十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
奥巴马的竞选资金是一点点从选民那里募集来的。如获党内提名,可得政府拔款,但也没多少。美国大选不仅禁外国人捐款,而且禁止公司机构捐款,而只允许个人捐款。不仅如此,还为个人捐款限制了上限,防止富人捐过多的款而影响未来的公平执政。
创新互联10多年企业网站制作服务;为您提供网站建设,网站制作,网页设计及高端网站定制服务,企业网站制作及推广,对围栏护栏等多个领域拥有多年的网站维护经验的网站建设公司。
不仅富人自己不能多捐,如果某个老板呼吁自己的员工给某人捐钱或投票支持他,都是犯法的。因此,想要筹到几千万竞争资金,唯一的办法是争取更多选民支持,一点点募集。所以,中国、公司、大笔捐款,这三条都是犯法的。
我记得以前已经有华人闹过这种丑闻了。美国的选举法就是要严防少数人企图用几个臭钱影响美国的政治。所以我们作为外国人就更别去自讨没趣了。
导入包
In [1]:
import numpy as npimport pandas as pdfrom pandas import Series,DataFrame
方便大家操作,将月份和参选人以及所在政党进行定义
In [2]:
months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6, 'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}of_interest = ['Obama, Barack', 'Romney, Mitt', 'Santorum, Rick', 'Paul, Ron', 'Gingrich, Newt']parties = { 'Bachmann, Michelle': 'Republican', 'Romney, Mitt': 'Republican', 'Obama, Barack': 'Democrat', "Roemer, Charles E. 'Buddy' III": 'Reform', 'Pawlenty, Timothy': 'Republican', 'Johnson, Gary Earl': 'Libertarian', 'Paul, Ron': 'Republican', 'Santorum, Rick': 'Republican', 'Cain, Herman': 'Republican', 'Gingrich, Newt': 'Republican', 'McCotter, Thaddeus G': 'Republican', 'Huntsman, Jon': 'Republican', 'Perry, Rick': 'Republican' }
读取文件
In [3]:
table = pd.read_csv('data/usa_election.txt')table.head()
C:\jupyter\lib\site-packages\IPython\core\interactiveshell.py:2785: DtypeWarning: Columns (6) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)
Out[3]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num
0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 20-JUN-11 NaN NaN NaN SA17A 736166
1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 23-JUN-11 NaN NaN NaN SA17A 736166
2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 05-JUL-11 NaN NaN NaN SA17A 749073
3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 01-AUG-11 NaN NaN NaN SA17A 749073
4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 20-JUN-11 NaN NaN NaN SA17A 736166
In [8]:
#使用map函数 字典,新建一列各个候选人所在党派partytable['party'] = table['cand_nm'].map(parties)table.head()
Out[8]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party
0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 20-JUN-11 NaN NaN NaN SA17A 736166 Republican
1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 23-JUN-11 NaN NaN NaN SA17A 736166 Republican
2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 05-JUL-11 NaN NaN NaN SA17A 749073 Republican
3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 01-AUG-11 NaN NaN NaN SA17A 749073 Republican
4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 20-JUN-11 NaN NaN NaN SA17A 736166 Republican
In [10]:
#party这一列中有哪些元素table['party'].unique()
Out[10]:
array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)
In [ ]:
#使用value_counts()函数,统计party列中各个元素出现次数,value_counts()是Series中的,无参,返回一个带有每个元素出现次数的Series
In [11]:
table['party'].value_counts()
Out[11]:
Democrat 292400Republican 237575Reform 5364Libertarian 702Name: party, dtype: int64
In [12]:
#使用groupby()函数,查看各个党派收到的政治献金总数contb_receipt_amttable.groupby(by='party')['contb_receipt_amt'].sum()
Out[12]:
partyDemocrat 8.105758e 07Libertarian 4.132769e 05Reform 3.390338e 05Republican 1.192255e 08Name: contb_receipt_amt, dtype: float64
In [13]:
#查看具体每天各个党派收到的政治献金总数contb_receipt_amt 。使用groupby([多个分组参数])table.groupby(by=['party','contb_receipt_dt'])['contb_receipt_amt'].sum()
Out[13]:
party contb_receipt_dtDemocrat 01-AUG-11 175281.00 01-DEC-11 651532.82 01-JAN-12 58098.80 01-JUL-11 165961.00 01-JUN-11 145459.00 01-MAY-11 82644.00 01-NOV-11 122529.87 01-OCT-11 148977.00 01-SEP-11 403297.62 02-AUG-11 164510.11 02-DEC-11 216056.96 02-JAN-12 89743.60 02-JUL-11 17105.00 02-JUN-11 422453.00 02-MAY-11 396675.00 02-NOV-11 147183.81 02-OCT-11 62605.62 02-SEP-11 137948.41 03-AUG-11 147053.02 03-DEC-11 81304.02 03-JAN-12 87406.97 03-JUL-11 5982.00 03-JUN-11 320176.20 03-MAY-11 261819.11 03-NOV-11 119304.56 03-OCT-11 363061.02 03-SEP-11 45598.00 04-APR-11 640235.12 04-AUG-11 598784.23 04-DEC-11 72795.10 ... Republican 29-AUG-11 941769.23 29-DEC-11 428501.42 29-JAN-11 750.00 29-JAN-12 75220.02 29-JUL-11 233423.35 29-JUN-11 1340704.29 29-MAR-11 38875.00 29-MAY-11 8363.20 29-NOV-11 407322.64 29-OCT-11 81924.01 29-SEP-11 1612794.52 30-APR-11 43004.80 30-AUG-11 915548.58 30-DEC-11 492470.45 30-JAN-12 255204.80 30-JUL-11 12249.04 30-JUN-11 2744932.63 30-MAR-11 50240.00 30-MAY-11 17803.60 30-NOV-11 809014.83 30-OCT-11 43913.16 30-SEP-11 4886331.76 31-AUG-11 1017735.02 31-DEC-11 1094376.72 31-JAN-11 6000.00 31-JAN-12 869890.41 31-JUL-11 12781.02 31-MAR-11 62475.00 31-MAY-11 301339.80 31-OCT-11 734601.83Name: contb_receipt_amt, Length: 1183, dtype: float64
In [14]:
def trasform_date(d): day,month,year = d.split('-') month = months[month] return "20" year '-' str(month) '-' day
In [17]:
#将表中日期格式转换为'yyyy-mm-dd'。日期格式,通过函数加map方式进行转换table['contb_receipt_dt'] = table['contb_receipt_dt'].apply(trasform_date)
In [18]:
table.head()
Out[18]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party
0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 2011-6-20 NaN NaN NaN SA17A 736166 Republican
1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 2011-6-23 NaN NaN NaN SA17A 736166 Republican
2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 2011-7-05 NaN NaN NaN SA17A 749073 Republican
3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 2011-8-01 NaN NaN NaN SA17A 749073 Republican
4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 2011-6-20 NaN NaN NaN SA17A 736166 Republican
In [19]:
#查看老兵(捐献者职业)DISABLED VETERAN主要支持谁 :查看老兵们捐赠给谁的钱最多table['contbr_occupation'] == 'DISABLED VETERAN'
Out[19]:
0 False1 False2 False3 False4 False5 False6 False7 False8 False9 False10 False11 False12 False13 False14 False15 False16 False17 False18 False19 False20 False21 False22 False23 False24 False25 False26 False27 False28 False29 False ... 536011 False536012 False536013 False536014 False536015 False536016 False536017 False536018 False536019 False536020 False536021 False536022 False536023 False536024 False536025 False536026 False536027 False536028 False536029 False536030 False536031 False536032 False536033 False536034 False536035 False536036 False536037 False536038 False536039 False536040 FalseName: contbr_occupation, Length: 536041, dtype: bool
In [21]:
old_bing_df = table.loc[table['contbr_occupation'] == 'DISABLED VETERAN']
In [22]:
old_bing_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()
Out[22]:
cand_nmCain, Herman 300.00Obama, Barack 4205.00Paul, Ron 2425.49Santorum, Rick 250.00Name: contb_receipt_amt, dtype: float64
In [23]:
table['contb_receipt_amt'].max()
Out[23]:
1944042.43
In [24]:
#找出候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额 .通过query("查询条件来查找捐献人职业")table.query('contb_receipt_amt == 1944042.43')
Out[24]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party
176127 C00431445 P80003338 Obama, Barack OBAMA VICTORY FUND 2012 - UNITEMIZED CHICAGO IL 60680 NaN NaN 1944042.43 2011-12-31 NaN X * SA18 763233 Democrat
来源:
这里整理了一份Python开发的学习路线,可按照这份大纲来安排学习计划~
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握Python的开发环境与编程核心知识
2. 熟练运用Python面向对象知识进行程序开发
3. 对Python的核心库和组件有深入理解
4. 熟练应用SQL语句进行数据库常用操作
5. 熟练运用Linux操作系统命令及环境配置
6. 熟练使用MySQL,掌握数据库高级操作
7. 能综合运用所学知识完成项目
知识点:
Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发
阶段目标:
1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系统中的前后端交互过程与通信协议
3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发
4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识
5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理
6. 使用Web开发框架实现贯穿项目
知识点:
Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析
阶段目标:
1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析
2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取
3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理
4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取
5. 熟练掌握数据分析相关概念及工作流程
6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用
7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写
8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战
知识点:
网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能
阶段目标:
1. 理解机器学习相关的基本概念及系统处理流程
2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题
3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等
4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等
5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目
知识点:
1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。
很多时候,我们查询数据的时候都不会把明细数据查询出来,那样一般意义也不大。更多的时候是根据业务需求,把数据聚合成业务能直接使用的数据。MYSQL中有5个聚合函数,如下面5个,用的最多的还是count和sum,下面分别介绍一下用法。
【COUNT】
在MySQL中,COUNT()函数统计数据表中包含的记录行的总数,或者根据查询结果返回列中包含的数据行数,使用方法有以下两种:
求order表中,查询一共有多少条订单数,SQL语句如下↓
【SUM】
在MySQL中,SUM()是一个求总和的函数,返回指定列值的总和。
求order表中所有产品销售数量,SQL语句如下↓
【AVG】
在MySQL中,AVG()函数通过计算返回的行数和每一行数据的和,求得指定列数据的平均值。
求order表中,2021年所有产品的平均单价,SQL语句如下↓
【MAX/MIN】
在MySQL中,MAX()函数是用来返回指定列中的最大值。
求order表中,查询最大的单价价格,SQL预计如下↓
在MySQL中,MIN()函数是用来返回指定列中的最小值。
求order表中,查询最小的单价价格,SQL预计如下↓
【结合GROUP BY】
正常情况下,聚合函数都是搭配着GROUP BY来使用的。可以是按省份聚合、产品聚合、时间聚合等等。下面演示每个品牌最低单价的聚合,其他几个聚合函数使用方式一样,SQL语句如下↓
还可以用ORDER BY排个序,求每个品牌累计销售价格的SQL语句,从高到低排序↓
End
◆ PowerBI开场白
◆ Python高德地图可视化
◆ Python不规则条形图
前言分组原理
核心:
1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。
2.默认axis=0按行分组,可指定axis=1对列分组。
对数据进行分组操作的过程可以概括为:split-apply-combine三步:
1.按照键值(key)或者分组变量将数据分组。
2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。
3.将函数计算后的结果聚合。
1 分组模式及其对象
1.1 分组的一般模式
三个要素:分组依据、数据来源、操作及其返回结果
df.groupby(分组依据)[数据来源].使用操作
1.2 分组依据的本质
1.3Groupby 对象
通过 ngroups 属性,可以访问分为了多少组:
通过 groups 属性,可以返回从 组名映射到 组索引列表的字典:
当 size 作为 DataFrame 的属性时,返回的是表长乘以表宽的大小,但在 groupby 对象上表示统计每个组的 元素个数:
通过 get_group 方法可以直接获取所在组对应的行,此时必须知道组的具体名字:
1.4 分组的三大操作
分组的三大操作:聚合、变换和过滤
2.聚合函数
2.1内置聚合函数
包括如下函数: max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod
2.2agg 方法
【a】使用多个函数
当使用多个聚合函数时,需要用列表的形式把内置聚合函数的对应的字符串传入,先前提到的所有字符串都是合法的。
【b】对特定的列使用特定的聚合函数
对于方法和列的特殊对应,可以通过构造字典传入 agg 中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。
【c】使用自定义函数
在 agg 中可以使用具体的自定义函数,需要注意传入函数的参数是之前数据源中的列,逐列进行计算
【d】聚合结果重命名 如果想要对结果进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数
3 变换和过滤
3.1 变换函数与 transform 方法
变 换 函 数 的 返 回 值 为 同 长 度 的 序 列, 最 常 用 的 内 置 变 换 函 数 是 累 计 函 数:cum- count/cumsum/cumprod/cummax/cummin ,它们的使用方式和聚合函数类似,只不过完成的是组内 累计操作。
3.2 组索引与过滤
过滤在分组中是对于组的过滤,而索引是对于行的过滤
组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回 True 则会被保留,False 则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为 DataFrame 返回。
在 groupby 对象中,定义了 filter 方法进行组的筛选,其中自定义函数的输入参数为数据源构成的 DataFrame 本身,在之前例子中定义的 groupby 对象中,传入的就是 df[['Height', 'Weight']] ,因此所有表方法和属性 都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。
4 跨列分组
4.1 apply 的引入
4.2 apply 的使用
在设计上,apply 的自定义函数传入参数与 filter 完全一致,只不过后者只允许返回布尔值
【a】标量情况:结果得到的是 Series ,索引与 agg 的结果一致
【b】Series 情况:得到的是 DataFrame ,行索引与标量情况一致,列索引为 Series 的索引
【c】DataFrame 情况:得到的是 DataFrame ,行索引最内层在每个组原先 agg 的结果索引上,再加一层返 回的 DataFrame 行索引,同时分组结果 DataFrame 的列索引和返回的 DataFrame 列索引一致
#encoding=utf-8
def getRows():
names = ["A", "B"]
rows = [
[1, 'm'],
[2, 'm'],
[3, 'q'],
[3, 'q'],
[2, 'q'],
[1, 's'],
[4, 's'],
[2, 's'],
[1, 's'],
[3, 'm']
]
rs = []
for row in rows:
rs.append(dict(zip(names, row)))
return rs
def count():
rs = getRows()
# 取所有B=m的行
rs = [r for r in rs if r["B"] == 'm']
rs = sorted(rs, key=lambda r: r["B"])
# 计算数量
result = {}
for r in rs:
if r["A"] in result:
result[r["A"]] += 1
else:
result[r["A"]] = 1
return result
print count()
#encoding=utf-8
def getRows():
names = ["A", "B"]
rows = [
[1, 'm'],
[2, 'm'],
[3, 'q'],
[3, 'q'],
[2, 'q'],
[1, 's'],
[4, 's'],
[2, 's'],
[1, 's'],
[3, 'm']
]
rs = []
for row in rows:
rs.append(dict(zip(names, row)))
return rs
def count():
rs = getRows()
# 取所有B=m的行
rs = [r for r in rs if r["B"] == 'm']
rs = sorted(rs, key=lambda r: r["B"])
# 计算数量
result = {}
for r in rs:
if r["A"] in result:
result[r["A"]] += 1
else:
result[r["A"]] = 1
return result
print count()