我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Hadoop压缩技术的概念

本篇内容主要讲解“Hadoop压缩技术的概念”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Hadoop压缩技术的概念”吧!

创新互联公司主要从事网页设计、PC网站建设(电脑版网站建设)、wap网站建设(手机版网站建设)、响应式网站建设、程序开发、网站优化、微网站、重庆小程序开发公司等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了丰富的成都网站设计、成都做网站、网站设计、网络营销经验,集策划、开发、设计、营销、管理等多方位专业化运作于一体。

1 概述

Hadoop压缩技术的概念

压缩策略和原则

Hadoop压缩技术的概念

2 MR 支持的压缩编码

压缩格式hadoop自带算法文件扩展名是否可切分换成压缩格式后,原程序是否需要修改
DEFLATE是,直接使用DEFLATE.deflate和文本处理一样,不需要修改
Gzip是,直接使用DEFLATE.gz和文本处理一样,不需要修改
bzip2是,直接使用bzip2.bz2和文本处理一样,不需要修改
LZO否,需要安装LZO.lzo需要建索引,还需要指定输入格式
Snappy否,需要安装Snappy.snappy和文本处理一样,不需要修改

为了支持多种压缩/解压缩算法,Hadoop 引入了编码/解码器,如下表所示。

压缩格式对应的编码/解码器
DEFLATEorg.apache.hadoop.io.compress.DefaultCodec
gziporg.apache.hadoop.io.compress.GzipCodec
bzip2org.apache.hadoop.io.compress.BZip2Codec
LZOcom.hadoop.compression.lzo.LzopCodec
Snappyorg.apache.hadoop.io.compress.SnappyCodec

压缩性能的比较

压缩算法原始文件大小压缩文件大小压缩速度解压速度
gzip8.3GB1.8GB17.5MB/s58MB/s
bzip28.3GB1.1GB2.4MB/s9.5MB/s
LZO8.3GB2.9GB49.3MB/s74.6MB/s

3 压缩方式选择

3.1 Gzip 压缩

Hadoop压缩技术的概念

3.2 Bzip2 压缩

Hadoop压缩技术的概念

3.3 Lzo 压缩

Hadoop压缩技术的概念

3.4 Snappy 压缩

Hadoop压缩技术的概念

4 压缩位置选择

Hadoop压缩技术的概念

5 压缩参数配置

参数默认值阶段
io.compression.codecs                                                  [在core-site.xml]org.apache.hadoop.io.compress.DefaultCodecorg apache.hadoop.io.compress.GzipCodec org.apache.hadoop.io.compress.BZip2Codec输入压缩
mapreduce.map.output.compress                   [mapred-site.xml]falsemapper输出
mapreduce.map.output.compress.codec     [mapred-site.xml]org.apache.hadoop.io.compress.DefaultCodecmapper输出
mapreduce.output.fileoutputformat.compress [mapred-site.xml]falsereducer输出
mapreduce.output.fileoutputformat.compress.codec [mapred-site.xml]org.apache.hadoop.io.compress  DefaultCodecreducer输出
mapreduce.output.fileoutputformat.compress.type [mapred-site.xml]RECORDreducer输出

6 压缩实操案例

6.1 数据流的压缩和解压缩

package com.djm.mapreduce.zip;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.CompressionInputStream;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.*;

public class CompressUtils {
    public static void main(String[] args) throws IOException, ClassNotFoundException {
        compress(args[0], args[1]);
        decompress(args[0]);
    }

    private static void decompress(String path) throws IOException {
        CompressionCodecFactory factory = new CompressionCodecFactory(new Configuration());
        CompressionCodec codec = (CompressionCodec) factory.getCodec(new Path(path));
        if (codec == null) {
            System.out.println("cannot find codec for file " + path);
            return;
        }
        CompressionInputStream cis = codec.createInputStream(new FileInputStream(new File(path)));
        FileOutputStream fos = new FileOutputStream(new File(path + ".decoded"));
        IOUtils.copyBytes(cis, fos, 1024);
        cis.close();
        fos.close();
    }

    private static void compress(String path, String method) throws IOException, ClassNotFoundException {
        FileInputStream fis = new FileInputStream(new File(path));
        Class codecClass  = Class.forName(method);
        CompressionCodec codec  = (CompressionCodec) ReflectionUtils.newInstance(codecClass, new Configuration());
        FileOutputStream fos = new FileOutputStream(new File(path + codec.getDefaultExtension()));
        CompressionOutputStream cos = codec.createOutputStream(fos);
        IOUtils.copyBytes(fis, cos, 1024);
        cos.close();
        fos.close();
        fis.close();
    }
}

6.2 Map 输出端采用压缩

package com.djm.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WcDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration = new Configuration();
        configuration.setBoolean("mapreduce.map.output.compress", true);
        // 设置map端输出压缩方式
        configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);
        Job job = Job.getInstance(configuration);
        job.setJarByClass(WcDriver.class);
        job.setMapperClass(WcMapper.class);
        job.setReducerClass(WcReduce.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

6.3 Reduce 输出端采用压缩

package com.djm.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WcDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        job.setJarByClass(WcDriver.class);
        job.setMapperClass(WcMapper.class);
        job.setReducerClass(WcReduce.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        // 设置reduce端输出压缩开启
        FileOutputFormat.setCompressOutput(job, true);
        // 设置压缩的方式
        FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

到此,相信大家对“Hadoop压缩技术的概念”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


文章名称:Hadoop压缩技术的概念
标题链接:http://shouzuofang.com/article/ihocde.html

其他资讯