我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Android|超简单集成HMSMLKit实现最大脸微笑抓拍

前言

  如果大家对HMS ML Kit 人脸检测功能有所了解,相信已经动手调用我们提供的接口编写自己的APP啦。目前就有小伙伴在调用接口的过程中反馈,不太清楚HMS ML Kit 文档中的MLMaxSizeFaceTransactor这个接口的使用方法。为了让大家更加深刻的了解我们的接口,方便在场景中使用,在这篇文章中小编准备抛砖引玉,大家可以打开思路,多多尝试。如果有小伙伴想要深入的了解更加全面具体的功能,请大家移步 https://developer.huawei.com/consumer/cn/hms/huawei-mlkit。

成都创新互联公司专注于浚县网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供浚县营销型网站建设,浚县网站制作、浚县网页设计、浚县网站官网定制、小程序定制开发服务,打造浚县网络公司原创品牌,更为您提供浚县网站排名全网营销落地服务。


场景

  相信大家都有在五一、十一出去游玩的经历,是不是都是这样的people mountain people sea.

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍
  好不容易找个人少的地方,结果拍出来的照片是这样的。

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍
  这样的

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍
  还有这样的

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍

  不看不知道,原来我的面部表情这么丰富。。是不是很心累?每次想要发个出去浪的朋友圈,都要在白天拍的成百上千张类似款的照片里,花上一小时才能找到一张能看的照片。。。

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍

  为了解决类似问题,HMS ML Kit 提供了追踪识别画面中最大脸的接口,能够识别图像中的最大脸,方便对跟踪图像中的”重点目标“做相关操作和处理。本文中就简单的调用MLMaxSizeFaceTransactor这个接口,实现最大脸微笑抓拍的功能。


开发前准备

android studio 安装

  很简单,下载安装即可。具体下载链接:
  Android studio 官网下载链接: https://developer.android.com/studio
  Android studio安装流程参考链接: https://www.cnblogs.com/xiadewang/p/7820377.html

在项目级gradle里添加华为maven仓

  打开AndroidStudio项目级build.gradle文件

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍

  增量添加如下maven地址:

buildscript {
     {        
        maven {url 'http://developer.huawei.com/repo/'}
    }    
}
allprojects {
    repositories {       
        maven { url 'http://developer.huawei.com/repo/'}
    }
}

在应用级的build.gradle里面加上SDK依赖

Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍

在AndroidManifest.xml文件里面增量添加模型自动下载

  要使应用程序能够在用户从华为应用市场安装您的应用程序后,自动将最新的机器学习模型更新到用户设备,请将以下语句添加到该应用程序的AndroidManifest.xml文件中:

 
...    

在AndroidManifest.xml文件里面申请相机、访问网络和存储权限

 


 


代码开发关键步骤

动态权限申请

@Override 
public void onCreate(Bundle savedInstanceState) { 
    ……
    if (!allPermissionsGranted()) {
        getRuntimePermissions();
    }

创建人脸识别检测器

  可以通过人脸识别检测配置器“MLFaceAnalyzerSetting”创建人脸识别检测器。

MLFaceAnalyzerSetting setting =
                new MLFaceAnalyzerSetting.Factory()
                        .setFeatureType(MLFaceAnalyzerSetting.TYPE_FEATURES)
                        .setKeyPointType(MLFaceAnalyzerSetting.TYPE_UNSUPPORT_KEYPOINTS)
                        .setMinFaceProportion(0.1f)
                        .setTracingAllowed(true)
                        .create();

  通过MLMaxSizeFaceTransactor.Creator创建“MLMaxSizeFaceTransactor”对象用于处理检测到的最大脸,其中objectCreateCallback()方法是在检测到对象的时候调用的,objectUpdateCallback()方法是在对象更新了的时候调用的,在方法里通过Overlay在识别到的最大人脸上标记了一个方块,并通过检测结果获取MLFaceEmotion来识别微笑表情触发拍照。

MLMaxSizeFaceTransactor transactor = new MLMaxSizeFaceTransactor.Creator(analyzer, new MLResultTrailer() {
                @Override
                public void objectCreateCallback(int itemId, MLFace obj) {
                    LiveFaceAnalyseActivity.this.overlay.clear();
                    if (obj == null) {
                        return;
                    }
                    LocalFaceGraphic faceGraphic =
                            new LocalFaceGraphic(LiveFaceAnalyseActivity.this.overlay, obj, LiveFaceAnalyseActivity.this);
                    LiveFaceAnalyseActivity.this.overlay.addGraphic(faceGraphic);
                    MLFaceEmotion emotion = obj.getEmotions();
                    if (emotion.getSmilingProbability() > smilingPossibility) {
                        safeToTakePicture = false;
                        mHandler.sendEmptyMessage(TAKE_PHOTO);
                    }
                }
                @Override
                public void objectUpdateCallback(MLAnalyzer.Result var1, MLFace obj) {
                    LiveFaceAnalyseActivity.this.overlay.clear();
                    if (obj == null) {
                        return;
                    }
                    LocalFaceGraphic faceGraphic =
                            new LocalFaceGraphic(LiveFaceAnalyseActivity.this.overlay, obj, LiveFaceAnalyseActivity.this);
                    LiveFaceAnalyseActivity.this.overlay.addGraphic(faceGraphic);
                    MLFaceEmotion emotion = obj.getEmotions();
                    if (emotion.getSmilingProbability() > smilingPossibility && safeToTakePicture) {
                        safeToTakePicture = false;
                        mHandler.sendEmptyMessage(TAKE_PHOTO);
                    }
                }
                @Override
                public void lostCallback(MLAnalyzer.Result result) {
                    LiveFaceAnalyseActivity.this.overlay.clear();
                }
                @Override
                public void completeCallback() {
                    LiveFaceAnalyseActivity.this.overlay.clear();
                }
            }).create();
this.analyzer.setTransactor(transactor);

通过LensEngine.Creator创建LensEngine实例进行视频流的人脸检测检测

this.mLensEngine = new LensEngine.Creator(context, this.analyzer).setLensType(this.lensType)
                .applyDisplayDimension(640, 480)
                .applyFps(25.0f)
                .enableAutomaticFocus(true)
                .create();

启动相机预览进行人脸检测

this.mPreview.start(this.mLensEngine, this.overlay);


文章题目:Android|超简单集成HMSMLKit实现最大脸微笑抓拍
当前地址:http://shouzuofang.com/article/ihsdis.html