我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

R语言聚类分析

聚类分析有很多种, 效果好不好大概要根据数据特征来确定。最常见的是kmeans法聚类

创新互联建站是一家专业提供宜黄企业网站建设,专注与做网站、网站制作H5网站设计、小程序制作等业务。10年已为宜黄众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。

> setwd("D:\\R_test")
> data_in <- read.delim("tmp_result.txt", header=T)
> fit <- kmeans(data_in, 3)
> library(cluster)
> clusplot(data_in, fit$cluster, color=T, shade=T, labels = 2, lines =0)

也可以用mclust

> install.packages("mclust")
试开URL’http://cloud.r-project.org/bin/windows/contrib/2.14/mclust_4.0.zip'
Content type 'application/zip' length 2371233 bytes (2.3 Mb)
打开了URL
downloaded 2.3 Mb

程序包‘mclust’打开成功,MD5和检查也通过

下载的程序包在
        C:\Users\Administrator\AppData\Local\Temp\RtmpiIyw2o\downloaded_packages里
> fit <- Mclust(data_in)        
> summary(fit)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm 
----------------------------------------------------

Mclust XXX (elliposidal multivariate normal) model with 1 component:

 log.likelihood   n    df     BIC
        1616504 263 33410 3046843

Clustering table:
  1 
263 

> fit$  // 按下Tab键,有以下选项
fit$call           fit$modelName      fit$n              fit$d              fit$G              
fit$BIC            fit$bic            fit$loglik         fit$df             fit$parameters     
fit$classification fit$uncertainty

> plot(fit, what="classification")

// http://www.statmethods.net/advstats/cluster.html

网站栏目:R语言聚类分析
地址分享:http://shouzuofang.com/article/jcgdhs.html

其他资讯