我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Hadoop之Yarn

1 概述

Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。

创新互联是一家集网站建设,古交企业网站建设,古交品牌网站建设,网站定制,古交网站建设报价,网络营销,网络优化,古交网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

2 Yarn 基本架构

Hadoop 之 Yarn

3 Yarn 工作机制

Hadoop 之 Yarn

工作机制详解:

1)MR 程序提交到客户端所在的节点。

2)YarnRunner 向 ResourceManager 申请一个 Application。

3)RM 将该应用程序的资源路径返回给 YarnRunner。

4)该程序将运行所需资源提交到 HDFS 上。

5)程序资源提交完毕后,申请运行 mrAppMaster。

6)RM 将用户的请求初始化成一个 Task。

7)其中一个 NodeManager 领取到 Task 任务。

8)该 NodeManager 创建容器 Container,并产生 MRAppmaster。

9)Container 从 HDFS 上拷贝资源到本地。

10)MRAppmaster 向 RM 申请运行 MapTask 资源。

11)RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分别领取任务并创建容器。

12)MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager 分别启动 MapTask,MapTask 对数据分区排序。

13)MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。

14)ReduceTask 向 MapTask 获取相应分区的数据。

15)程序运行完毕后,MR 会向 RM 申请注销自己。

4 作业提交全过程

4.1 作业提交过程之 YARN

Hadoop 之 Yarn

作业提交全过程详解:

1)作业提交

  • Client调用 job.waitForCompletion() 方法,向整个集群提交 MapReduce 作业。
  • Client 向 RM 申请一个作业 id。
  • RM 给 Client 返回该 job 资源的提交路径和作业 id。
  • Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。
  • Client 提交完资源后,向 RM 申请运行 MrAppMaster。

2)作业初始化

  • 当 RM 收到 Client 的请求后,将该 job 添加到容量调度器中。
  • 某一个空闲的 NM 领取到该 Job。
  • 该 NM 创建 Container,并产生 MRAppmaster。
  • 下载 Client 提交的资源到本地。

3)任务分配

  • MrAppMaster 向 RM 申请运行多个 MapTask 任务资源。
  • RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分别领取任务并创建容器。

4)任务运行

  • MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager 分别启动 MapTask,MapTask 对数据分区排序。
  • MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。
  • ReduceTask 向 MapTask获取相应分区的数据。
  • 程序运行完毕后,MR 会向 RM 申请注销自己。

5)进度和状态更新

  • YARN 中的任务将其进度和状态(包括 counter )返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。

6)作业完成

  • 除了向应用管理器请求作业进度外, 客户端每 5 秒都会通过调用 waitForCompletion() 来检查作业是否完成,时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后, 应用管理器和 Container 会清理工作状态,作业的信息会被作业历史服务器存储以备之后用户核查。

4.2 作业提交过程之 MapReduce

Hadoop 之 Yarn

5 资源调度器

目前,Hadoop作业调度器主要有三种:FIFO、Capacity Scheduler和Fair Scheduler。Hadoop2.7.2默认的资源调度器是Capacity Scheduler。

[yarn-default.xml]


    The class to use as the resource scheduler.
    yarn.resourcemanager.scheduler.class
    org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler

先进先出调度器
Hadoop 之 Yarn

容量调度器
Hadoop 之 Yarn

公平调度器
Hadoop 之 Yarn

6 任务的推测执行

作业完成时间取决于最慢的任务完成时间,一个作业由若干个 Map 任务和 Reduce 任务构成,因硬件老化、软件Bug等,某些任务可能运行非常慢,系统中有 99% 的 Map 任务都完成了,只有少数几个 Map 老是进度很慢,完不成,怎么办?

推测执行机制

为拖后腿的任务启动一个备份任务,同时运行,谁先运行完用谁的结果

执行推测任务的前提条件

  • 每个 Task 只能有一个备份任务
  • 当前 Job 已完成的 Task 必须不小于 0.05(5%)
  • 开启推测执行参数设置,mapred-site.xml 文件中默认是打开的。

不能启用推测执行机制情况

  • 任务间存在严重的负载倾斜
  • 特殊任务,比如任务向数据库中写数据。

原理图:
Hadoop 之 Yarn


分享文章:Hadoop之Yarn
分享链接:http://shouzuofang.com/article/jehpph.html

其他资讯