我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

MySQL订单ID是怎么生成的

本篇内容介绍了“MySQL订单ID是怎么生成的”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

创新互联:公司2013年成立为各行业开拓出企业自己的“网站建设”服务,为成百上千家公司企业提供了专业的网站制作、成都网站建设、网页设计和网站推广服务, 定制设计由设计师亲自精心设计,设计的效果完全按照客户的要求,并适当的提出合理的建议,拥有的视觉效果,策划师分析客户的同行竞争对手,根据客户的实际情况给出合理的网站构架,制作客户同行业具有领先地位的。

面试官:小伙子,你低着头笑什么呐。开始面试了,你知道订单ID是怎么生成的吗?

啥?订单ID怎么生成?美女怎么不按套路出牌!HashMap实现原理,我已经倒背如流,你不问。瞎问什么订单ID。

我:还能咋生成?用数据库主键自增呗。

面试官:这样不行啊。数据库主键顺序自增,每天有多少订单量被竞争对手看的一清二楚,商业机密都暴露了。
况且单机MySQL只能支持几百量级的并发,我们公司每天千万订单量,hold不住啊。

我:嗯,那就用用数据库集群,自增ID起始值按机器编号,步长等于机器数量。
比如有两台机器,第一台机器生成的ID是1、3、5、7,第二台机器生成的ID是2、4、6、8。性能不行就加机器,这并发量der一下就上去了。

面试官:小伙子,你想得倒是挺好。你有没有想过实现百万级的并发,大概就需要2000台机器,你这还只是用来生成订单ID,公司再有钱也经不起这么造。

我:既然MySQL的并发量不行,我们是不是可以提前从MySQL获取一批自增ID,加载到本地内存中,然后从内存中并发取,这并发性能岂不是杠杠滴。

面试官:你还挺上道,这种叫号段模式。并发量是上去了,但是自增ID还是不能作为订单ID的。

我:用Java自带UUID怎么样?

import java.util.UUID;

/**
 * @author yideng
 * @apiNote UUID示例
 */
public class UUIDTest {
    public static void main(String[] args) {
        String orderId = UUID.randomUUID().toString().replace("-", "");
        System.out.println(orderId);
    }
}

输出结果:

58e93ecab9c64295b15f7f4661edcbc1

面试官:也不行。32位字符串会占用更大的空间,无序的字符串作数据库主键,每次插入数据库的时候,MySQL为了维护B+树结构,需要频繁调整节点顺序,影响性能。况且字符串太长,也没有任何业务含义,pass。

小伙子,你可能是没参与过电商系统,我先跟说一下生成订单ID要满足哪些条件:

全局唯一:如果订单ID重复了,肯定要完蛋。
高性能:要做到高并发、低延迟。生成订单ID都成为瓶颈了,那还得了。
高可用:至少要做到4个9,别动不动就宕机了。
易用性:如果为了满足上述要求,搞了几百台服务器,复杂且难以维护,也不行。
数值且有序递增:数值占用的空间更小,有序递增能保证插入MySQL的时候更高性能。
嵌入业务含义:如果订单ID里面能嵌入业务含义,就能通过订单ID知道是哪个业务线生成的,便于排查问题。

我擦,生成一个小小的订单ID,搞出这么多规则,还能玩下去吗?难道今天的面试要跪,怎么可能。一灯的文章我一直订阅,这个还能难得住我,陪美女程序员玩玩还当真了。

我:我听说圈内有一种流传已久的分布式、高性能、高可用的订单ID生成算法—雪花算法,完全能满足你的上述要求。雪花算法生成ID是Long类型,长度64位。

MySQL订单ID是怎么生成的

第 1 位:符号位,暂时不用。
第 2~42 位:共41位,时间戳,单位是毫秒,可以支撑大约69年
第 43~52 位:共10位,机器ID,最多可容纳1024台机器
第 53~64 位:共12位,序列号,是自增值,表示同一毫秒内产生的ID,单台机器每毫秒最多可生成4096个订单ID

代码实现:

/**
 * @author 一灯架构
 * @apiNote 雪花算法
 **/
public class SnowFlake {

    /**
     * 起始时间戳,从2021-12-01开始生成
     */
    private final static long START_STAMP = 1638288000000L;

    /**
     * 序列号占用的位数 12
     */
    private final static long SEQUENCE_BIT = 12;

    /**
     * 机器标识占用的位数
     */
    private final static long MACHINE_BIT = 10;

    /**
     * 机器数量最大值
     */
    private final static long MAX_MACHINE_NUM = ~(-1L << MACHINE_BIT);

    /**
     * 序列号最大值
     */
    private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long TIMESTAMP_LEFT = SEQUENCE_BIT + MACHINE_BIT;

    /**
     * 机器标识
     */
    private long machineId;
    /**
     * 序列号
     */
    private long sequence = 0L;
    /**
     * 上一次时间戳
     */
    private long lastStamp = -1L;

    /**
     * 构造方法
     * @param machineId 机器ID
     */
    public SnowFlake(long machineId) {
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new RuntimeException("机器超过最大数量");
        }
        this.machineId = machineId;
    }

    /**
     * 产生下一个ID
     */
    public synchronized long nextId() {
        long currStamp = getNewStamp();
        if (currStamp < lastStamp) {
            throw new RuntimeException("时钟后移,拒绝生成ID!");
        }

        if (currStamp == lastStamp) {
            // 相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            // 同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStamp = getNextMill();
            }
        } else {
            // 不同毫秒内,序列号置为0
            sequence = 0L;
        }

        lastStamp = currStamp;

        return (currStamp - START_STAMP) << TIMESTAMP_LEFT // 时间戳部分
                | machineId << MACHINE_LEFT             // 机器标识部分
                | sequence;                             // 序列号部分
    }

    private long getNextMill() {
        long mill = getNewStamp();
        while (mill <= lastStamp) {
            mill = getNewStamp();
        }
        return mill;
    }

    private long getNewStamp() {
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        // 订单ID生成测试,机器ID指定第0台
        SnowFlake snowFlake = new SnowFlake(0);
        System.out.println(snowFlake.nextId());
    }
}

输出结果:

6836348333850624

接入非常简单,不需要搭建服务集群,。代码逻辑非常简单,,同一毫秒内,订单ID的序列号自增。同步锁只作用于本机,机器之间互不影响,每毫秒可以生成四百万个订单ID,非常强悍。

生成规则不是固定的,可以根据自身的业务需求调整。如果你不需要那么大的并发量,可以把机器标识位拆出一部分,当作业务标识位,标识是哪个业务线生成的订单ID。

面试官:小伙子,有点东西,深藏不漏啊。再问个更难的问题,你觉得雪花算法还有改进的空间吗?

你真是打破砂锅问到底,不把我问趴下不结束。幸亏来之前我瞥了一眼一灯的文章。

我:有的,雪花算法严重依赖系统时钟。如果时钟回拨,就会生成重复ID。

面试官:有什么解决办法吗?

我:有问题就会有答案。比如美团的Leaf(美团自研一种分布式ID生成系统),为了解决时钟回拨,引入了zookeeper,原理也很简单,就是比较当前系统时间跟生成节点的时间。

MySQL订单ID是怎么生成的

有的对并发要求更高的系统,比如双十一秒杀,每毫秒4百万并发还不能满足要求,就可以使用雪花算法和号段模式相结合,比如百度的UidGenerator、滴滴的TinyId。想想也是,号段模式的预先生成ID肯定是高性能分布式订单ID的最终解决方案。

“MySQL订单ID是怎么生成的”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


网站题目:MySQL订单ID是怎么生成的
转载注明:http://shouzuofang.com/article/jjcegi.html

其他资讯