十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
递归:就是自己调自己,但是没终止条件会死循环,所以你的递归代码里有结束自调自的条件,这样就创造了有限次的循环(代码中你看不到for或foreach但是有循环发生)
创新互联建站是一家专注于网站设计、成都网站制作与策划设计,渝水网站建设哪家好?创新互联建站做网站,专注于网站建设十余年,网设计领域的专业建站公司;建站业务涵盖:渝水等地区。渝水做网站价格咨询:18980820575
在一个函数里存在函数本身,这样只要没达到要求,就会一直调用函数本身,这个就是递归函数的意思。
递归就是递推公式的模拟
函数直接间接的调用自己,一直到可以直接得到结果为止。
必须有一个可以不用递归,直接完成的情况。并且总是能够达到。
不然就是害自己了,你的程序永不结束,直到堆栈空间用完,程序或系统崩溃,莫名奇妙的退出。
真正的程序里,不会出现 阶乘运算、级数运算、幂指数运算等方面使用递归的代码。
这些完全可以使用迭代,而且高效。
递归用在树,图这样的数据结构上以及一些排序算法上,非常自然,而非递归算法却比较难懂,而且还不好实现.
你这个怎么这么象二叉树的先根遍历。
所谓递归,说的简单点,就是函数自己调用自己,然后在某个特定条件下。结束这种自我调用。
如果不给予这个结束条件,就成了无限死循环了。这样这个递归也就毫无意义了。
如下面问题
1 1 2 3 5 8 13 21 ........n
分析可以看出, i 表示第几个数, n 表示该数的值
当i = 1 时, n = 1;
当i = 2 时, n = 1;
当i = 3 时 n = i1 + i2;
当i = 4 时 n = i2 + i3
所以可以写个函数
int fun(int n) // 这里的n代表第几个数
{
if(1 == n || 2 == n) // 第一个数
{
return 1;
}
else
{
return fun(n - 1) + fun(n - 2); // 这里就是自己调用自己,形成循环自我调用。
}
}
注: 以上代码只是用来演示递归,不包含错误校验。
在实际生产过程中。该代码不够健壮。
如此,就完成了递归。你就可以求得第n个数了。
何时考虑使用递归。
当你分析一个问题的时候,发现这个问题,是一个自我循环时,而且这个自我循环到一个给定值,就可以终止的时候,你就快要考虑递归了。
递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。
递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:
(1)边界条件:确定递归到何时终止,也称为递归出口。
(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果
汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:
(1)将塔上的n-1个碟子借助塔C先移到塔B上;
(2)把塔A上剩下的一个碟子移到塔C上;
(3)将n-1个碟子从塔B借助塔A移到塔C上。
在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:
(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;
(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;
(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序
三、递归函数的内部执行过程
一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:
(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;
(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;
(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。
上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
额,抽象的说就是解决一个问题时重复使用一个动作,那么就可以用递归的方式来解决,告诉电脑重复做这个动作就行.结合看一些递归算法的简单程序,应该好懂些.